Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/shibing624/similarities
Similarities: a toolkit for similarity calculation and semantic search. 相似度计算、匹配搜索工具包,支持亿级数据文搜文、文搜图、图搜图,python3开发,开箱即用。
https://github.com/shibing624/similarities
bm25 deep-learning faiss image-search image-similarity matching nlp pytorch search-engine similarity similarity-search text-matching
Last synced: 3 days ago
JSON representation
Similarities: a toolkit for similarity calculation and semantic search. 相似度计算、匹配搜索工具包,支持亿级数据文搜文、文搜图、图搜图,python3开发,开箱即用。
- Host: GitHub
- URL: https://github.com/shibing624/similarities
- Owner: shibing624
- License: apache-2.0
- Created: 2022-02-23T10:17:53.000Z (almost 3 years ago)
- Default Branch: main
- Last Pushed: 2024-10-29T14:09:17.000Z (3 months ago)
- Last Synced: 2024-10-29T15:47:56.161Z (2 months ago)
- Topics: bm25, deep-learning, faiss, image-search, image-similarity, matching, nlp, pytorch, search-engine, similarity, similarity-search, text-matching
- Language: Python
- Homepage: https://pypi.org/project/similarities/
- Size: 9.61 MB
- Stars: 769
- Watchers: 9
- Forks: 74
- Open Issues: 7
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
- Citation: CITATION.cff
Awesome Lists containing this project
- awesome-ai-papers - [similarities
- awesome-ai-papers - [similarities
README
[**🇨🇳中文**](https://github.com/shibing624/similarities/blob/main/README.md) | [**🌐English**](https://github.com/shibing624/similarities/blob/main/README_EN.md) | [**📖文档/Docs**](https://github.com/shibing624/similarities/wiki) | [**🤖模型/Models**](https://huggingface.co/shibing624)
-----------------
# Similarities: Similarity Calculation and Semantic Search
[![PyPI version](https://badge.fury.io/py/similarities.svg)](https://badge.fury.io/py/similarities)
[![Downloads](https://static.pepy.tech/badge/similarities)](https://pepy.tech/project/similarities)
[![Contributions welcome](https://img.shields.io/badge/contributions-welcome-brightgreen.svg)](CONTRIBUTING.md)
[![License Apache 2.0](https://img.shields.io/badge/license-Apache%202.0-blue.svg)](LICENSE)
[![python_version](https://img.shields.io/badge/Python-3.5%2B-green.svg)](requirements.txt)
[![GitHub issues](https://img.shields.io/github/issues/shibing624/similarities.svg)](https://github.com/shibing624/similarities/issues)
[![Wechat Group](https://img.shields.io/badge/wechat-group-green.svg?logo=wechat)](#Contact)**similarities**: a toolkit for similarity calculation and semantic search, supports text and image. 相似度计算、语义匹配搜索工具包。
**similarities** 实现了多种文本和图片的相似度计算、语义匹配检索算法,支持亿级数据文搜文、文搜图、图搜图,python3开发,pip安装,开箱即用。
**Guide**
- [Features](#Features)
- [Install](#install)
- [Usage](#usage)
- [Contact](#Contact)
- [Acknowledgements](#Acknowledgements)## Features
### 文本相似度计算 + 文本搜索
- 语义匹配模型【推荐】:本项目基于text2vec实现了CoSENT模型的文本相似度计算和文本搜索
- 支持中英文、多语言多种SentenceBERT类预训练模型
- 支持 Cos Similarity/Dot Product/Hamming Distance/Euclidean Distance 等多种相似度计算方法
- 支持 SemanticSearch/Faiss/Annoy/Hnsw 等多种文本搜索算法
- 支持亿级数据高效检索
- 支持命令行文本转向量(多卡)、建索引、批量检索、启动服务
- 字面匹配模型:本项目实现了Word2Vec、BM25、RankBM25、TFIDF、SimHash、同义词词林、知网Hownet义原匹配等多种字面匹配模型### 图像相似度计算/图文相似度计算 + 图搜图/文搜图
- CLIP(Contrastive Language-Image Pre-Training)模型:图文匹配模型,可用于图文特征(embeddings)、相似度计算、图文检索、零样本图片分类,本项目基于PyTorch实现了CLIP模型的向量表征、构建索引(基于AutoFaiss)、批量检索、后台服务(基于FastAPI)、前端展现(基于Gradio)功能
- 支持[openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32)等CLIP系列模型
- 支持[OFA-Sys/chinese-clip-vit-huge-patch14](https://huggingface.co/OFA-Sys/chinese-clip-vit-huge-patch14)等Chinese-CLIP系列模型
- 支持前后端分离部署,FastAPI后端服务,Gradio前端展现
- 支持亿级数据高效检索,基于Faiss检索,支持GPU加速
- 支持图搜图、文搜图、向量搜图
- 支持图像embedding提取、文本embedding提取
- 支持图像相似度计算、图文相似度计算
- 支持命令行图像转向量(多卡)、建索引、批量检索、启动服务
- 图像特征提取:本项目基于cv2实现了pHash、dHash、wHash、aHash、SIFT等多种图像特征提取算法## Demo
Image Search Demo: https://huggingface.co/spaces/shibing624/CLIP-Image-Search![](https://github.com/shibing624/similarities/blob/main/docs/white_cat.png)
Text Search Demo: https://huggingface.co/spaces/shibing624/similarities
![](https://github.com/shibing624/similarities/blob/main/docs/hf_search.png)
## Install
```
pip install torch # conda install pytorch
pip install -U similarities
```or
```
git clone https://github.com/shibing624/similarities.git
cd similarities
pip install -e .
```## Usage
### 1. 文本向量相似度计算
example: [examples/text_similarity_demo.py](https://github.com/shibing624/similarities/blob/main/examples/text_similarity_demo.py)
```python
from similarities import BertSimilarity
m = BertSimilarity(model_name_or_path="shibing624/text2vec-base-chinese")
r = m.similarity('如何更换花呗绑定银行卡', '花呗更改绑定银行卡')
print(f"similarity score: {float(r)}") # similarity score: 0.855146050453186
```- `model_name_or_path`:模型名称或者路径,默认会从HF model hub下载并使用中文语义匹配模型[shibing624/text2vec-base-chinese](https://huggingface.co/shibing624/text2vec-base-chinese),如果需要多语言,可以替换为[shibing624/text2vec-base-multilingual](https://huggingface.co/shibing624/text2vec-base-multilingual)模型,支持中、英、韩、日、德、意等多国语言
### 2. 文本向量搜索
在文档候选集中找与query最相似的文本,常用于QA场景的问句相似匹配、文本搜索等任务。
#### SemanticSearch精准搜索算法,Cos Similarity + topK 聚类检索,适合百万内数据集
example: [examples/text_semantic_search_demo.py](https://github.com/shibing624/similarities/blob/main/examples/text_semantic_search_demo.py)
#### Annoy、Hnswlib等近似搜索算法,适合百万级数据集
example: [examples/fast_text_semantic_search_demo.py](https://github.com/shibing624/similarities/blob/main/examples/fast_text_semantic_search_demo.py)
#### Faiss高效向量检索,适合亿级数据集
- 文本转向量,建索引,批量检索,启动服务:[examples/faiss_bert_search_server_demo.py](https://github.com/shibing624/similarities/blob/main/examples/faiss_bert_search_server_demo.py)
- 前端python调用:[examples/faiss_bert_search_client_demo.py](https://github.com/shibing624/similarities/blob/main/examples/faiss_bert_search_client_demo.py)
### 3. 基于字面的文本相似度计算和文本搜索
支持同义词词林(Cilin)、知网Hownet、词向量(WordEmbedding)、Tfidf、SimHash、BM25等算法的相似度计算和字面匹配搜索,常用于文本匹配冷启动。
example: [examples/literal_text_semantic_search_demo.py](https://github.com/shibing624/similarities/blob/main/examples/literal_text_semantic_search_demo.py)
### 4. 图像相似度计算和图片搜索
支持CLIP、pHash、SIFT等算法的图像相似度计算和匹配搜索,中文CLIP模型支持图搜图,文搜图、还支持中英文图文互搜。
example: [examples/image_semantic_search_demo.py](https://github.com/shibing624/similarities/blob/main/examples/image_semantic_search_demo.py)
![image_sim](https://github.com/shibing624/similarities/blob/main/docs/image_sim.png)
#### Faiss高效向量检索,适合亿级数据集
- 图像转向量,建索引,批量检索,启动服务:[examples/faiss_clip_search_server_demo.py](https://github.com/shibing624/similarities/blob/main/examples/faiss_clip_search_server_demo.py)
- 前端python调用:[examples/faiss_clip_search_client_demo.py](https://github.com/shibing624/similarities/blob/main/examples/faiss_clip_search_client_demo.py)
- 前端gradio调用:[examples/faiss_clip_search_gradio_demo.py](https://github.com/shibing624/similarities/blob/main/examples/faiss_clip_search_gradio_demo.py)
### 5. 聚类
通过社群发现(community_detection)算法可以在大规模数据集上执行聚类,寻找聚类簇(即相似的句子组)。
example: [examples/text_clustering_demo.py](https://github.com/shibing624/similarities/blob/main/examples/text_clustering_demo.py)
### 6. 图文语义去重
通过同义句挖掘(paraphrase_mining_embeddings)算法可以从大量句子或文档集中挖掘出具有相似意义的句子对,可用于冗余图文检测,语义去重。
- 文本语义去重:[examples/text_duplicates_demo.py](https://github.com/shibing624/similarities/blob/main/examples/text_duplicates_demo.py)
- 图片语义去重:[examples/image_duplicates_demo.py](https://github.com/shibing624/similarities/blob/main/examples/image_duplicates_demo.py)### 命令行模式(CLI)
- 支持批量获取文本向量、图像向量(embedding)
- 支持构建索引(index)
- 支持批量检索(filter)
- 支持启动服务(server)code: [cli.py](https://github.com/shibing624/similarities/blob/main/similarities/cli.py)
```
> similarities -hNAME
similaritiesSYNOPSIS
similarities COMMANDCOMMANDS
COMMAND is one of the following:bert_embedding
Compute embeddings for a list of sentencesbert_index
Build indexes from text embeddings using autofaissbert_filter
Entry point of bert filter, batch search indexbert_server
Main entry point of bert search backend, start the serverclip_embedding
Embedding text and image with clip modelclip_index
Build indexes from embeddings using autofaissclip_filter
Entry point of clip filter, batch search indexclip_server
Main entry point of clip search backend, start the server
```run:
```shell
pip install similarities -U
similarities clip_embedding -h# example
cd examples
similarities clip_embedding data/toy_clip/
```- `bert_embedding`等是二级命令,bert开头的是文本相关,clip开头的是图像相关
- 各二级命令使用方法见`similarities clip_embedding -h`
- 上面示例中`data/toy_clip/`是`clip_embedding`方法的`input_dir`参数,输入文件目录(required)## Contact
- Issue(建议)
:[![GitHub issues](https://img.shields.io/github/issues/shibing624/similarities.svg)](https://github.com/shibing624/similarities/issues)
- 邮件我:xuming: [email protected]
- 微信我: 加我*微信号:xuming624, 备注:姓名-公司-NLP* 进NLP交流群。## Citation
如果你在研究中使用了similarities,请按如下格式引用:
APA:
```
Xu, M. Similarities: Compute similarity score for humans (Version 1.0.1) [Computer software]. https://github.com/shibing624/similarities
```BibTeX:
```
@misc{Xu_Similarities_Compute_similarity,
title={Similarities: similarity calculation and semantic search toolkit},
author={Xu Ming},
year={2022},
howpublished={\url{https://github.com/shibing624/similarities}},
}
```## License
授权协议为 [The Apache License 2.0](/LICENSE),可免费用做商业用途。请在产品说明中附加similarities的链接和授权协议。
## Contribute
项目代码还很粗糙,如果大家对代码有所改进,欢迎提交回本项目,在提交之前,注意以下两点:
- 在`tests`添加相应的单元测试
- 使用`python -m pytest`来运行所有单元测试,确保所有单测都是通过的之后即可提交PR。
## Acknowledgements
- [A Simple but Tough-to-Beat Baseline for Sentence Embeddings[Sanjeev Arora and Yingyu Liang and Tengyu Ma, 2017]](https://openreview.net/forum?id=SyK00v5xx)
- [https://github.com/liuhuanyong/SentenceSimilarity](https://github.com/liuhuanyong/SentenceSimilarity)
- [https://github.com/qwertyforce/image_search](https://github.com/qwertyforce/image_search)
- [ImageHash - Official Github repository](https://github.com/JohannesBuchner/imagehash)
- [https://github.com/openai/CLIP](https://github.com/openai/CLIP)
- [https://github.com/OFA-Sys/Chinese-CLIP](https://github.com/OFA-Sys/Chinese-CLIP)
- [https://github.com/UKPLab/sentence-transformers](https://github.com/UKPLab/sentence-transformers)
- [https://github.com/rom1504/clip-retrieval](https://github.com/rom1504/clip-retrieval)Thanks for their great work!