Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/shibing624/similarity
similarity: Text similarity calculation Toolkit for Java. 文本相似度计算工具包,java编写,可用于文本相似度计算、情感分析等任务,开箱即用。
https://github.com/shibing624/similarity
java nlp semantic sentiment sim-scores similarity
Last synced: 3 days ago
JSON representation
similarity: Text similarity calculation Toolkit for Java. 文本相似度计算工具包,java编写,可用于文本相似度计算、情感分析等任务,开箱即用。
- Host: GitHub
- URL: https://github.com/shibing624/similarity
- Owner: shibing624
- License: apache-2.0
- Created: 2016-11-09T02:02:01.000Z (about 8 years ago)
- Default Branch: master
- Last Pushed: 2025-01-04T10:04:47.000Z (18 days ago)
- Last Synced: 2025-01-11T20:00:11.276Z (10 days ago)
- Topics: java, nlp, semantic, sentiment, sim-scores, similarity
- Language: Java
- Homepage: https://shibing624.github.io/similarity/
- Size: 76.1 MB
- Stars: 1,475
- Watchers: 40
- Forks: 329
- Open Issues: 11
-
Metadata Files:
- Readme: README.md
- License: LICENSE
- Citation: CITATION.cff
Awesome Lists containing this project
README
[![jitpack](https://jitpack.io/v/shibing624/similarity.svg)](https://jitpack.io/#shibing624/similarity)
[![Stars](https://img.shields.io/github/stars/shibing624/similarity?style=social)](https://github.com/shibing624/similarity)
[![License Apache 2.0](https://img.shields.io/badge/license-Apache%202.0-blue.svg)](LICENSE)
[![GitHub issues](https://img.shields.io/github/issues/shibing624/similarity.svg)](https://github.com/shibing624/similarity/issues)
[![Wechat Group](https://img.shields.io/badge/wechat-group-green.svg?logo=wechat)](#Contact)# Similarity
similarity, compute similarity score between text strings, Java written.similarity,相似度计算工具包,可用于文本相似度计算、情感倾向分析等,Java编写。
**similarity**是由一系列算法组成的Java版相似度计算工具包,目标是传播自然语言处理中相似度计算方法。**similarity**具备工具实用、性能高效、架构清晰、语料时新、可自定义的特点。
# Feature
**similarity**提供下列功能:
- 词语相似度计算
* **词林编码法相似度[推荐]**
* 汉语语义法相似度
* 知网词语相似度
* 字面编辑距离法
- 短语相似度计算
* **简单短语相似度[推荐]**
- 句子相似度计算
* **词性和词序结合法[推荐]**
* 编辑距离算法
* Gregor编辑距离法
* 优化编辑距离法
- 段落相似度计算
* **余弦相似度[推荐]**
* 编辑距离
* 欧几里得距离
* Jaccard相似性系数
* Jaro距离
* Jaro–Winkler距离
* 曼哈顿距离
* SimHash + 汉明距离
* Sørensen–Dice系数- 知网义原
* 词语义原树- 情感分析
* 正面倾向程度
* 负面倾向程度
* 情感倾向性
- 近似词
* word2vec在提供丰富功能的同时,**similarity**内部模块坚持低耦合、模型坚持惰性加载、词典坚持明文发布,使用方便,帮助用户训练自己的语料。
# Usage
引入Jar包### Maven
```xml
jitpack.io
https://jitpack.io
```
```xml
com.github.shibing624
similarity
1.1.6```
### Gradle
gradle的引入:[![jitpack](https://jitpack.io/v/shibing624/similarity.svg)](https://jitpack.io/#shibing624/similarity)### 使用示例
```java
import org.xm.Similarity;
import org.xm.tendency.word.HownetWordTendency;public class demo {
public static void main(String[] args) {
double result = Similarity.cilinSimilarity("电动车", "自行车");
System.out.println(result);String word = "混蛋";
HownetWordTendency hownetWordTendency = new HownetWordTendency();
result = hownetWordTendency.getTendency(word);
System.out.println(word + " 词语情感趋势值:" + result);
}
}
```## 功能演示
### 1. 词语相似度计算
文本长度:词语粒度
**推荐**使用词林相似度:`org.xm.Similarity.cilinSimilarity`,是基于[同义词词林](https://blog.csdn.net/sinat_33741547/article/details/80016713)的相似度计算方法
example: [src/test/java/org.xm/WordSimilarityDemo.java](src/test/java/org/xm/WordSimilarityDemo.java)
```java
package org.xm;public class WordSimilarityDemo {
public static void main(String[] args) {
String word1 = "教师";
String word2 = "教授";
double cilinSimilarityResult = Similarity.cilinSimilarity(word1, word2);
double pinyinSimilarityResult = Similarity.pinyinSimilarity(word1, word2);
double conceptSimilarityResult = Similarity.conceptSimilarity(word1, word2);
double charBasedSimilarityResult = Similarity.charBasedSimilarity(word1, word2);System.out.println(word1 + " vs " + word2 + " 词林相似度值:" + cilinSimilarityResult);
System.out.println(word1 + " vs " + word2 + " 拼音相似度值:" + pinyinSimilarityResult);
System.out.println(word1 + " vs " + word2 + " 概念相似度值:" + conceptSimilarityResult);
System.out.println(word1 + " vs " + word2 + " 字面相似度值:" + charBasedSimilarityResult);
}
}
```* result:
![word_sim result](./docs/pic/word_sim.png)
### 2. 短语相似度计算
文本长度:短语粒度
**推荐**使用短语相似度:`org.xm.Similarity.phraseSimilarity`,本质是通过两个短语具有的相同字符,和相同字符的位置计算其相似度的方法
example: [src/test/java/org.xm/PhraseSimilarityDemo.java](src/test/java/org/xm/PhraseSimilarityDemo.java)
```java
public static void main(String[] args) {
String phrase1 = "继续努力";
String phrase2 = "持续发展";
double result = Similarity.phraseSimilarity(phrase1, phrase2);System.out.println(phrase1 + " vs " + phrase2 + " 短语相似度值:" + result);
}
```* result:
![phrase sim result](./docs/pic/phrase_sim.png)
### 3. 句子相似度计算
文本长度:句子粒度**推荐**使用词形词序句子相似度:`org.xm.similarity.morphoSimilarity`,一种既考虑两个句子相同文本字面,也考虑相同文本出现的前后顺序的相似度方法
example: [src/test/java/org.xm/SentenceSimilarityDemo.java](src/test/java/org/xm/SentenceSimilarityDemo.java)
```java
public static void main(String[] args) {
String sentence1 = "中国人爱吃鱼";
String sentence2 = "湖北佬最喜吃鱼";double morphoSimilarityResult = Similarity.morphoSimilarity(sentence1, sentence2);
double editDistanceResult = Similarity.editDistanceSimilarity(sentence1, sentence2);
double standEditDistanceResult = Similarity.standardEditDistanceSimilarity(sentence1,sentence2);
double gregeorEditDistanceResult = Similarity.gregorEditDistanceSimilarity(sentence1,sentence2);System.out.println(sentence1 + " vs " + sentence2 + " 词形词序句子相似度值:" + morphoSimilarityResult);
System.out.println(sentence1 + " vs " + sentence2 + " 优化的编辑距离句子相似度值:" + editDistanceResult);
System.out.println(sentence1 + " vs " + sentence2 + " 标准编辑距离句子相似度值:" + standEditDistanceResult);
System.out.println(sentence1 + " vs " + sentence2 + " gregeor编辑距离句子相似度值:" + gregeorEditDistanceResult);
}
```* result:
![sentence sim result](./docs/pic/sentence_sim.png)
### 4. 段落文本相似度计算
文本长度:段落粒度(一段话,25字符 < length(text) < 500字符)**推荐**使用词形词序句子相似度:`org.xm.similarity.text.CosineSimilarity`,一种考虑两个段落中相同的文本,经过切词,词频和词性权重加权,并用余弦计算相似度的方法
example: [src/test/java/org.xm/similarity/text/CosineSimilarityTest.java](src/test/java/org/xm/similarity/text/CosineSimilarityTest.java)
```java
@Test
public void getSimilarityScore() throws Exception {
String text1 = "对于俄罗斯来说,最大的战果莫过于夺取乌克兰首都基辅,也就是现任总统泽连斯基和他政府的所在地。目前夺取基辅的战斗已经打响。";
String text2 = "迄今为止,俄罗斯的入侵似乎没有完全按计划成功执行——英国国防部情报部门表示,在乌克兰军队激烈抵抗下,俄罗斯军队已经损失数以百计的士兵。尽管如此,俄军在继续推进。";
TextSimilarity cosSimilarity = new CosineSimilarity();
double score1 = cosSimilarity.getSimilarity(text1, text2);
System.out.println("cos相似度分值:" + score1);TextSimilarity editSimilarity = new EditDistanceSimilarity();
double score2 = editSimilarity.getSimilarity(text1, text2);
System.out.println("edit相似度分值:" + score2);
}
```* result:
```shell
cos相似度分值:0.399143
edit相似度分值:0.0875
```### 5. 基于义原树的情感分析
example: [src/test/java/org/xm/tendency/word/HownetWordTendencyTest.java](src/test/java/org/xm/tendency/word/HownetWordTendencyTest.java)```java
@Test
public void getTendency() throws Exception {
HownetWordTendency hownet = new HownetWordTendency();
String word = "美好";
double sim = hownet.getTendency(word);
System.out.println(word + ":" + sim);
System.out.println("混蛋:" + hownet.getTendency("混蛋"));
}
```
* result:![tendency result](./docs/pic/tendency.png)
本例是基于义原树的词语粒度情感极性分析,关于文本情感分析有[pytextclassifier](https://github.com/shibing624/pytextclassifier),利用深度神经网络模型、SVM分类算法实现的效果更好。
### 6. 近义词推荐
example: [src/test/java/org/xm/word2vec/Word2vecTest.java](src/test/java/org/xm/word2vec/Word2vecTest.java)```java
@Test
public void testHomoionym() throws Exception {
List result = Word2vec.getHomoionym(RAW_CORPUS_SPLIT_MODEL, "武功", 10);
System.out.println("武功 近似词:" + result);
}@Test
public void testHomoionymName() throws Exception {
String model = RAW_CORPUS_SPLIT_MODEL;
List result = Word2vec.getHomoionym(model, "乔帮主", 10);
System.out.println("乔帮主 近似词:" + result);List result2 = Word2vec.getHomoionym(model, "阿朱", 10);
System.out.println("阿朱 近似词:" + result2);List result3 = Word2vec.getHomoionym(model, "少林寺", 10);
System.out.println("少林寺 近似词:" + result3);
}
```* 训练过程:
![word2vec train](./docs/pic/word2v.png)
* result:
![word2vec result](./docs/pic/word2v_ret.png)
Word2vec词向量训练用的java版word2vec训练工具[Word2VEC_java](https://github.com/NLPchina/Word2VEC_java),训练语料是小说天龙八部,通过词向量实现得到近义词。
用户可以训练自定义语料,也可以用中文维基百科训练通用词向量。## Todo
文本相似性度量
- [x] 关键词匹配(TF-IDF、BM25)
- [x] 浅层语义匹配(WordEmbed隐语义模型,用word2vec或glove词向量直接累加构造的句向量)
- [x] 深度语义匹配模型(DSSM、CLSM、DeepMatch、MatchingFeatures、ARC-II、DeepMind见MatchZoo),BERT类语义匹配模型SentenceBERT、CoSENT见[text2vec](https://github.com/shibing624/text2vec)# Contact
- Issue(建议):[![GitHub issues](https://img.shields.io/github/issues/shibing624/similarity.svg)](https://github.com/shibing624/similarity/issues)
- 邮件我:xuming: [email protected]
- 微信我:
加我*微信号:xuming624, 备注:姓名-公司-NLP* 进NLP交流群。# License
授权协议为 [The Apache License 2.0](/LICENSE),可免费用做商业用途。请在产品说明中附加*similarity*的链接和授权协议。
# Contribute
项目代码还很粗糙,如果大家对代码有所改进,欢迎提交回本项目,在提交之前,注意以下两点:- 在`test`添加相应的单元测试
- 运行所有单元测试,确保所有单测都是通过的之后即可提交PR。
# Reference
* [DSSM] Po-Sen Huang, et al., 2013, Learning Deep Structured Semantic Models for Web Search using Clickthrough Data
* [CLSM] Yelong Shen, et al, 2014, A Latent Semantic Model with Convolutional-Pooling Structure for Information Retrieval
* [DeepMatch] Zhengdong Lu & Hang Li, 2013, A Deep Architecture for Matching Short Texts
* [MatchingFeatures] Zongcheng Ji, et al., 2014, An Information Retrieval Approach to Short Text Conversation
* [ARC-II] Baotian Hu, et al., 2015, Convolutional Neural Network Architectures for Matching Natural Language Sentences
* [DeepMind] Aliaksei Severyn, et al., 2015, Learning to Rank Short Text Pairs with Convolutional Deep Neural Networks