Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/shicai/DenseNet-Caffe
DenseNet Caffe Models, converted from https://github.com/liuzhuang13/DenseNet
https://github.com/shicai/DenseNet-Caffe
caffe deep-learning densenet imagenet torch
Last synced: 2 months ago
JSON representation
DenseNet Caffe Models, converted from https://github.com/liuzhuang13/DenseNet
- Host: GitHub
- URL: https://github.com/shicai/DenseNet-Caffe
- Owner: shicai
- Created: 2017-02-14T09:34:01.000Z (almost 8 years ago)
- Default Branch: master
- Last Pushed: 2019-08-29T17:45:11.000Z (over 5 years ago)
- Last Synced: 2024-08-01T22:49:53.143Z (5 months ago)
- Topics: caffe, deep-learning, densenet, imagenet, torch
- Size: 12.7 KB
- Stars: 355
- Watchers: 20
- Forks: 274
- Open Issues: 17
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-image-classification - unofficial-caffe : https://github.com/shicai/DenseNet-Caffe
- awesome-image-classification - unofficial-caffe : https://github.com/shicai/DenseNet-Caffe
README
# DenseNet-Caffe
### Introduction
We manually converted the original torch models into caffe format from https://github.com/liuzhuang13/DenseNet.For details of these networks, please read the original paper:
- [Densely Connected Convolutional Networks](https://arxiv.org/abs/1608.06993)### Pretrained DenseNet Models on ImageNet
The top-1/5 accuracy rates by using single center crop (crop size: 224x224, image size: 256xN)
Network|Top-1|Top-5|Download|Architecture
:---:|:---:|:---:|:---:|:---:
DenseNet 121 (k=32)| 74.91| 92.19| [caffemodel (30.8 MB)](https://drive.google.com/open?id=0B7ubpZO7HnlCcHlfNmJkU2VPelE)| [netscope](http://ethereon.github.io/netscope/#/gist/4928834eca7f06261ba0558e0ff63a6a), [netron](http://lutzroeder.github.io/netron?gist=4928834eca7f06261ba0558e0ff63a6a)
DenseNet 169 (k=32)| 76.09| 93.14| [caffemodel (54.6 MB)](https://drive.google.com/open?id=0B7ubpZO7HnlCRWVVdUJjVVAyQXc)| [netscope](http://ethereon.github.io/netscope/#/gist/71335b6e8634327c9b9216619572b3dd), [netron](http://lutzroeder.github.io/netron?gist=71335b6e8634327c9b9216619572b3dd)
DenseNet 201 (k=32)| 77.31| 93.64| [caffemodel (77.3 MB)](https://drive.google.com/open?id=0B7ubpZO7HnlCV3pud2oyR3lNMWs)| [netscope](http://ethereon.github.io/netscope/#/gist/ee808e19615844b8dbc7b13e92abd233), [netron](http://lutzroeder.github.io/netron?gist=ee808e19615844b8dbc7b13e92abd233)
DenseNet 161 (k=48)| 77.64| 93.79| [caffemodel (110 MB)](https://drive.google.com/open?id=0B7ubpZO7HnlCa0phRGJIRERoTXM)| [netscope](http://ethereon.github.io/netscope/#/gist/8fae97d9c66b40b8da443f7f23e9b29b), [netron](http://lutzroeder.github.io/netron?gist=8fae97d9c66b40b8da443f7f23e9b29b)**Update** (July 27, 2017): for your convenience, we also provide a link to these models on [Baidu Disk](https://pan.baidu.com/s/1gfjD8cF).
### Notes
Due to compatibility reasons, several modifications have been made:
- BGR mean values **[103.94,116.78,123.68]** are subtracted
- **scale: 0.017** is used, instead of the original std values for image preprocessing
- **ceil_mode: false** is used in the first pooling layers ('pool1')