Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/shikha-code36/competitive-python
Python Algorithms Package used in competitive programming
https://github.com/shikha-code36/competitive-python
algorithms algorithms-and-data-structures bfs binary-search-tree competitive-coding competitive-programming data-structures data-structures-and-algorithms dfs dijkstra-algorithm graph-algorithms leetcode leetcode-python pypi-package python python-competitive-programming python-ds-algo searching-algorithms sorting-algorithms trees
Last synced: 1 day ago
JSON representation
Python Algorithms Package used in competitive programming
- Host: GitHub
- URL: https://github.com/shikha-code36/competitive-python
- Owner: Shikha-code36
- License: mit
- Created: 2023-02-13T12:52:39.000Z (almost 2 years ago)
- Default Branch: main
- Last Pushed: 2023-03-19T12:46:19.000Z (over 1 year ago)
- Last Synced: 2024-08-10T23:25:28.282Z (3 months ago)
- Topics: algorithms, algorithms-and-data-structures, bfs, binary-search-tree, competitive-coding, competitive-programming, data-structures, data-structures-and-algorithms, dfs, dijkstra-algorithm, graph-algorithms, leetcode, leetcode-python, pypi-package, python, python-competitive-programming, python-ds-algo, searching-algorithms, sorting-algorithms, trees
- Language: Python
- Homepage: https://pypi.org/project/competitivepython/
- Size: 37.1 KB
- Stars: 16
- Watchers: 2
- Forks: 3
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
Awesome Lists containing this project
README
# Competitive Programming Algorithm Library in Python
competitivepython is an open-source library of algorithms and data structures implemented in Python. It offers a collection of frequently used algorithms and data structures that can be directly used in any Python-based project.
- Checkout the blog regarding this library [Click Here](https://pandeyshikha075.medium.com/an-overview-of-competitivepython-a-python-library-for-implementing-algorithms-and-data-structures-3a5776e13535)
## Features
- Provides implementations for several common algorithms and data structures such as:
- Searches: Binary Search, Linear Search, KMP Pattern Search
- Graphs: BFS, DFS, Dijkstra
- Sorting: Bubble Sort, Insertion Sort, Shell Sort, Selection Sort, Bucket Sort, Merge Sort, Tim Sort, Quick Sort, Heap Sort, Radix Sort
- Trees: Binary Search Tree
- Codebase is easy to use, well-documented, and compatible with Python 3.
- Open source and available under the MIT license## Installation
To install competitivepython library, simply run the following command:
```
pip install competitivepython
```## Usage
To use competitivepython in your project, import the desired algorithm or data structure and use it as needed. Below are some example use cases:
- Implementing searches:
- Binary Search
```
from competitivepython import searches
arr = [1, 2, 3, 4, 5]
target = 3
result = searches.binary_search(arr, target)
print("Binary Search:",result)
'''Output:
Binary Search: 2
'''
```
- Linear Search
```
from competitivepython import searches
arr = [5, 7, 9, 2, 4, 10]
target = 4
result = searches.linear_search(arr, target)
print("Linear Search:",result)
'''Output:
Linear Search: 4
'''
```
- Knuth–Morris–Pratt string Search
```
from competitivepython import searches
txt = "ABABDABACDABABCABAB"
pat = "ABABCABAB"
result = searches.kmp_search(pat,txt)
print("KMP Search:",result)
'''Output:
KMP Search: [10]
'''
```
- Implementing sorting:
- Bubble Sort
```
from competitivepython import sortingarr = [112, 6, 7, 12, 15]
result = sorting.bubble_sort(arr)
print('bubble sort:', result)''' Output ---
bubble sort: [6, 7, 12, 15, 112]
'''
```
- Bucket Sort
```
from competitivepython import sortingarr = [112, 6, 7, 12, 15]
result = sorting.bucket_sort(arr)
print('bucket sort:', result)''' Output ---
bucket sort: [6, 7, 12, 15, 112]
'''
```
- Heap Sort
```
from competitivepython import sortingarr = [112, 6, 7, 12, 15]
result = sorting.heap_sort(arr)
print('heap sort:', result)''' Output ---
heap sort: [6, 7, 12, 15, 112]
'''
```
- Insertion Sort
```
from competitivepython import sortingarr = [112, 6, 7, 12, 15]
result = sorting.insertion_sort(arr)
print('insertion sort:', result)''' Output ---
insertion sort: [6, 7, 12, 15, 112]
'''
```
- Merge Sort
```
from competitivepython import sortingarr = [112, 6, 7, 12, 15]
result = sorting.merge_sort(arr)
print('merge sort:', result)''' Output ---
merge sort: [6, 7, 12, 15, 112]
'''
```
- Quick Sort
```
from competitivepython import sortingarr = [112, 6, 7, 12, 15]
result = sorting.quick_sort(arr)
print('quick sort:', result)''' Output ---
quick sort: [6, 7, 12, 15, 112]
'''
```
- Radix Sort
```
from competitivepython import sortingarr = [112, 6, 7, 12, 15]
result = sorting.radix_sort(arr)
print('radix sort:', result)''' Output ---
radix sort: [6, 7, 12, # 15, 112]
'''
```
- Selection Sort
```
from competitivepython import sortingarr = [112, 6, 7, 12, 15]
result = sorting.selection_sort(arr)
print('selection sort:', result)''' Output ---
selection sort: [6, 7, 12, 15, 112]
'''
```
- Shell Sort
```
from competitivepython import sortingarr = [112, 6, 7, 12, 15]
result = sorting.shell_sort(arr)
print('shell sort:', result)
''' Output ---
shell sort: [6, 7, 12, 15, 112]
'''
```
- Tim Sort
```
from competitivepython import sortingarr = [112, 6, 7, 12, 15]
result = sorting.tim_sort(arr)
print('tim sort:', result)
''' Output ---
tim sort: [6, 7, 12, 15, 112]
'''
```
- Implementing graphs:
- Breadth First Search (or Breadth First Traversal)
```
from competitivepython import graphsgraph = {
'A': {'B': 1, 'C': 4},
'B': {'A': 1, 'C': 2, 'D': 5},
'C': {'A': 4, 'B': 2, 'D': 1},
'D': {'B': 5, 'C': 1},
}
start = 'A'
end = 'D'result = graphs.breadth_first_search(graph, 'C')
print("bfs:",result)
''' Output--
bfs: {'B', 'D', 'C', 'A'}
'''
```
- Depth First Search(or Depth First Traversal)
```
from competitivepython import graphsgraph = {
'A': {'B': 1, 'C': 4},
'B': {'A': 1, 'C': 2, 'D': 5},
'C': {'A': 4, 'B': 2, 'D': 1},
'D': {'B': 5, 'C': 1},
}
start = 'A'
end = 'D'result = graphs.depth_first_search(graph, 'C')
print("dfs:",result)''' Output--
dfs: {'B', 'D', 'C', 'A'}
'''
```
- Dijkstra’s Shortest Path
```
from competitivepython import graphsgraph = {
'A': {'B': 1, 'C': 4},
'B': {'A': 1, 'C': 2, 'D': 5},
'C': {'A': 4, 'B': 2, 'D': 1},
'D': {'B': 5, 'C': 1},
}
start = 'A'
end = 'D'result = graphs.dijkstra(graph, start, end)
print("dijikstra:",result)''' Output--
dijikstra: {'distance': 4, 'path': ['B', 'C', 'D']}
'''
```- Implementing trees:
```
from competitivepython import trees# Create an instance of the BinarySearchTree
bst = trees.BinarySearchTree()# Insert some values into the tree
bst.insert(50)
bst.insert(30)
bst.insert(20)
bst.insert(40)
bst.insert(70)
bst.insert(60)
bst.insert(80)# Check if a value is present in the tree
print(bst.search(50)) # Output: True
print(bst.search(35)) # Output: False# Get the values in the tree in in-order traversal order
print(bst.get_in_order_traversal()) # Output: [20, 30, 40, 50, 60, 70, 80]
```## Contributing
If you would like to contribute to the competitivepython project, please refer to the contributing guidelines in CONTRIBUTING.md. We welcome contributions of all types, including bug reports, feature requests, and code contributions.
## License
competitivepython is open source software released under the MIT license. Refer to the LICENSE file for more information.