Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/shikha-code36/competitive-python

Python Algorithms Package used in competitive programming
https://github.com/shikha-code36/competitive-python

algorithms algorithms-and-data-structures bfs binary-search-tree competitive-coding competitive-programming data-structures data-structures-and-algorithms dfs dijkstra-algorithm graph-algorithms leetcode leetcode-python pypi-package python python-competitive-programming python-ds-algo searching-algorithms sorting-algorithms trees

Last synced: 2 months ago
JSON representation

Python Algorithms Package used in competitive programming

Awesome Lists containing this project

README

        

# Competitive Programming Algorithm Library in Python

competitivepython is an open-source library of algorithms and data structures implemented in Python. It offers a collection of frequently used algorithms and data structures that can be directly used in any Python-based project.

- Checkout the blog regarding this library [Click Here](https://pandeyshikha075.medium.com/an-overview-of-competitivepython-a-python-library-for-implementing-algorithms-and-data-structures-3a5776e13535)

## Features

- Provides implementations for several common algorithms and data structures such as:
- Searches: Binary Search, Linear Search, KMP Pattern Search
- Graphs: BFS, DFS, Dijkstra
- Sorting: Bubble Sort, Insertion Sort, Shell Sort, Selection Sort, Bucket Sort, Merge Sort, Tim Sort, Quick Sort, Heap Sort, Radix Sort
- Trees: Binary Search Tree
- Codebase is easy to use, well-documented, and compatible with Python 3.
- Open source and available under the MIT license

## Installation

To install competitivepython library, simply run the following command:

```
pip install competitivepython
```

## Usage

To use competitivepython in your project, import the desired algorithm or data structure and use it as needed. Below are some example use cases:

- Implementing searches:
- Binary Search
```
from competitivepython import searches

arr = [1, 2, 3, 4, 5]
target = 3

result = searches.binary_search(arr, target)

print("Binary Search:",result)

'''Output:
Binary Search: 2
'''
```
- Linear Search
```
from competitivepython import searches

arr = [5, 7, 9, 2, 4, 10]
target = 4

result = searches.linear_search(arr, target)

print("Linear Search:",result)

'''Output:
Linear Search: 4
'''
```
- Knuth–Morris–Pratt string Search
```
from competitivepython import searches

txt = "ABABDABACDABABCABAB"
pat = "ABABCABAB"

result = searches.kmp_search(pat,txt)

print("KMP Search:",result)

'''Output:
KMP Search: [10]
'''
```

- Implementing sorting:
- Bubble Sort
```
from competitivepython import sorting

arr = [112, 6, 7, 12, 15]

result = sorting.bubble_sort(arr)
print('bubble sort:', result)

''' Output ---
bubble sort: [6, 7, 12, 15, 112]
'''
```
- Bucket Sort
```
from competitivepython import sorting

arr = [112, 6, 7, 12, 15]

result = sorting.bucket_sort(arr)
print('bucket sort:', result)

''' Output ---
bucket sort: [6, 7, 12, 15, 112]
'''
```
- Heap Sort
```
from competitivepython import sorting

arr = [112, 6, 7, 12, 15]

result = sorting.heap_sort(arr)

print('heap sort:', result)

''' Output ---
heap sort: [6, 7, 12, 15, 112]
'''
```
- Insertion Sort
```
from competitivepython import sorting

arr = [112, 6, 7, 12, 15]

result = sorting.insertion_sort(arr)

print('insertion sort:', result)

''' Output ---
insertion sort: [6, 7, 12, 15, 112]
'''
```
- Merge Sort
```
from competitivepython import sorting

arr = [112, 6, 7, 12, 15]

result = sorting.merge_sort(arr)

print('merge sort:', result)

''' Output ---
merge sort: [6, 7, 12, 15, 112]
'''
```
- Quick Sort
```
from competitivepython import sorting

arr = [112, 6, 7, 12, 15]

result = sorting.quick_sort(arr)

print('quick sort:', result)

''' Output ---
quick sort: [6, 7, 12, 15, 112]
'''
```
- Radix Sort
```
from competitivepython import sorting

arr = [112, 6, 7, 12, 15]

result = sorting.radix_sort(arr)

print('radix sort:', result)

''' Output ---
radix sort: [6, 7, 12, # 15, 112]
'''
```
- Selection Sort
```
from competitivepython import sorting

arr = [112, 6, 7, 12, 15]

result = sorting.selection_sort(arr)

print('selection sort:', result)

''' Output ---
selection sort: [6, 7, 12, 15, 112]
'''
```
- Shell Sort
```
from competitivepython import sorting

arr = [112, 6, 7, 12, 15]

result = sorting.shell_sort(arr)

print('shell sort:', result)

''' Output ---
shell sort: [6, 7, 12, 15, 112]
'''
```
- Tim Sort
```
from competitivepython import sorting

arr = [112, 6, 7, 12, 15]

result = sorting.tim_sort(arr)

print('tim sort:', result)

''' Output ---
tim sort: [6, 7, 12, 15, 112]
'''
```

- Implementing graphs:
- Breadth First Search (or Breadth First Traversal)
```
from competitivepython import graphs

graph = {
'A': {'B': 1, 'C': 4},
'B': {'A': 1, 'C': 2, 'D': 5},
'C': {'A': 4, 'B': 2, 'D': 1},
'D': {'B': 5, 'C': 1},
}
start = 'A'
end = 'D'

result = graphs.breadth_first_search(graph, 'C')

print("bfs:",result)

''' Output--
bfs: {'B', 'D', 'C', 'A'}
'''
```
- Depth First Search(or Depth First Traversal)
```
from competitivepython import graphs

graph = {
'A': {'B': 1, 'C': 4},
'B': {'A': 1, 'C': 2, 'D': 5},
'C': {'A': 4, 'B': 2, 'D': 1},
'D': {'B': 5, 'C': 1},
}
start = 'A'
end = 'D'

result = graphs.depth_first_search(graph, 'C')
print("dfs:",result)

''' Output--
dfs: {'B', 'D', 'C', 'A'}
'''
```
- Dijkstra’s Shortest Path
```
from competitivepython import graphs

graph = {
'A': {'B': 1, 'C': 4},
'B': {'A': 1, 'C': 2, 'D': 5},
'C': {'A': 4, 'B': 2, 'D': 1},
'D': {'B': 5, 'C': 1},
}
start = 'A'
end = 'D'

result = graphs.dijkstra(graph, start, end)
print("dijikstra:",result)

''' Output--
dijikstra: {'distance': 4, 'path': ['B', 'C', 'D']}
'''
```

- Implementing trees:

```
from competitivepython import trees

# Create an instance of the BinarySearchTree
bst = trees.BinarySearchTree()

# Insert some values into the tree
bst.insert(50)
bst.insert(30)
bst.insert(20)
bst.insert(40)
bst.insert(70)
bst.insert(60)
bst.insert(80)

# Check if a value is present in the tree
print(bst.search(50)) # Output: True
print(bst.search(35)) # Output: False

# Get the values in the tree in in-order traversal order
print(bst.get_in_order_traversal()) # Output: [20, 30, 40, 50, 60, 70, 80]
```

## Contributing

If you would like to contribute to the competitivepython project, please refer to the contributing guidelines in CONTRIBUTING.md. We welcome contributions of all types, including bug reports, feature requests, and code contributions.

## License

competitivepython is open source software released under the MIT license. Refer to the LICENSE file for more information.