Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/shikharvashistha/svm-random-forest-naive
SVM, Random Forest and Naïve Bayes Classifier & Regression
https://github.com/shikharvashistha/svm-random-forest-naive
Last synced: about 2 months ago
JSON representation
SVM, Random Forest and Naïve Bayes Classifier & Regression
- Host: GitHub
- URL: https://github.com/shikharvashistha/svm-random-forest-naive
- Owner: shikharvashistha
- License: mit
- Created: 2023-09-26T04:42:30.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2023-10-04T04:44:09.000Z (over 1 year ago)
- Last Synced: 2023-10-04T16:36:46.767Z (over 1 year ago)
- Language: Python
- Homepage:
- Size: 298 KB
- Stars: 0
- Watchers: 0
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
## How to run
- ``` pip install -r requirements.txt ```
- ``` python concrete.py ```## Specification
- This code includes the classification using random forest and svm for the concrete dataset.
- This code includes the ROC curve for the random forest classifier, feature importance for the random forest classifier, and the decision boundary for the svm classifier.
## Plots
### Random Forest ROC Curve
![alt text](assets/random_forest_roc_curve.png)### Random Forest Feature Importance
![alt text](assets/random_forest_feature_importance.png)### SVM Decision Boundary
![alt text](assets/svc_decision_boundary.png)### Naive Bayes ROC Curve
![alt text](assets/naive_bayes_roc_classifier_curve.png)## Screenshot of output
![alt text](assets/hw.png)