Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/shilangyu/aif-emotion-detection
Emotion detection project for the Artificial Inteligence Fundamentals course at WUT
https://github.com/shilangyu/aif-emotion-detection
emotion-recognition jupyter-notebook tensorflowjs
Last synced: 29 days ago
JSON representation
Emotion detection project for the Artificial Inteligence Fundamentals course at WUT
- Host: GitHub
- URL: https://github.com/shilangyu/aif-emotion-detection
- Owner: shilangyu
- Created: 2022-03-23T13:15:25.000Z (over 2 years ago)
- Default Branch: main
- Last Pushed: 2024-02-11T21:11:16.000Z (9 months ago)
- Last Synced: 2024-10-06T11:41:03.173Z (about 1 month ago)
- Topics: emotion-recognition, jupyter-notebook, tensorflowjs
- Language: Jupyter Notebook
- Homepage: http://github.shilangyu.dev/AIF-emotion-detection/
- Size: 17.1 MB
- Stars: 2
- Watchers: 3
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Emotion detection
[![](https://github.com/shilangyu/AIF-emotion-detection/workflows/image-demo-cd/badge.svg)](https://github.com/shilangyu/AIF-emotion-detection/actions)
Final rendered report can be found [here](report/report.pdf).
Uses [Pipenv](https://pipenv.pypa.io/en/latest/) for python dependency management.
## Text
More info in [the notebook](./text/text_emotion_detection.ipynb).
In `text/` install dependencies with `pipenv install`, then start the jupyter notebook with `pipenv run jupyter notebook`.
## Images
More info in [the notebook](./image/image_emotion_detection.ipynb) and the [demo README](image/demo).
In `image/` install dependencies with `pipenv install`, then start the jupyter notebook with `pipenv run jupyter notebook`.
The final model can be found [in the releases tab](https://github.com/shilangyu/AIF-emotion-detection/releases):
- `final_model.h5` - all the final weights for the keras model
- `tfjs_model.zip` - same model but converted to tensorflow.js using `pipenv run tensorflowjs_converter --input_format keras final_model.h5 tfjs/`