Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/shimaa83/llmchat
LLM chat app using RAG and langchain
https://github.com/shimaa83/llmchat
gemini langchain llm python3 streamlit
Last synced: 5 days ago
JSON representation
LLM chat app using RAG and langchain
- Host: GitHub
- URL: https://github.com/shimaa83/llmchat
- Owner: shimaa83
- Created: 2024-08-21T22:53:11.000Z (3 months ago)
- Default Branch: main
- Last Pushed: 2024-08-21T23:10:17.000Z (3 months ago)
- Last Synced: 2024-10-11T09:22:34.330Z (28 days ago)
- Topics: gemini, langchain, llm, python3, streamlit
- Language: Python
- Homepage:
- Size: 9.77 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Research Question Answering App
This is a Streamlit application that allows users to upload a PDF research, input a question about the research, and receive a detailed summary or answer based on the content of the PDF using gemini model.
## Features
- **Upload PDF**: Upload a PDF file to be processed.
- **Ask Questions**: Enter questions about the content of the PDF.
- **Get Answers**: Receive detailed answers or summaries based on the PDF content.## Requirements
- Python 3.7 or higher
- Required Python libraries:
- `streamlit`
- `pdfplumber`
- `langchain_community`
- `langchain`
- `langchain_chroma`
- `langchain_google_genai`
- `langchain_core`
- `python-dotenv`## Installation
1. Clone the repository:
```bash
git clone https://github.com/shimaa83/LLMChat.git
cd LLMChat
2. Create a .env file in the root directory of the project and add your Google API key:
- GOOGLE_API_KEY=your_google_api_key_here
3. Start the Streamlit app:
- streamlit run chat.py![LLM](https://github.com/user-attachments/assets/b3adcc4e-0566-433b-b733-f830337c0ba7)