Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/showlab/DeVRF
The Pytorch implementation of "DeVRF: Fast Deformable Voxel Radiance Fields for Dynamic Scenes"
https://github.com/showlab/DeVRF
Last synced: 2 months ago
JSON representation
The Pytorch implementation of "DeVRF: Fast Deformable Voxel Radiance Fields for Dynamic Scenes"
- Host: GitHub
- URL: https://github.com/showlab/DeVRF
- Owner: showlab
- License: other
- Created: 2022-05-31T04:17:21.000Z (over 2 years ago)
- Default Branch: main
- Last Pushed: 2022-10-17T12:38:51.000Z (over 2 years ago)
- Last Synced: 2024-04-28T05:08:05.704Z (9 months ago)
- Language: Python
- Size: 1.01 MB
- Stars: 177
- Watchers: 8
- Forks: 12
- Open Issues: 3
-
Metadata Files:
- Readme: README.md
- License: LICENSE.txt
Awesome Lists containing this project
- awesome-NeRF - Torch - wei-liu.github.io/DeVRF/)| (Papers / NeRF Related Tasks)
- awesome-NeRF - Torch - wei-liu.github.io/DeVRF/)| (Papers / NeRF Related Tasks)
README
# DeVRF: Fast Deformable Voxel Radiance Fields for Dynamic Scenes
[Project page](https://jia-wei-liu.github.io/DeVRF) | [arXiv](https://arxiv.org/abs/2205.15723)
> **TL;DR:** A novel representation and learning paradigm for dynamic radiance fields reconstruction -- 100x faster, no loss in dynamic novel view synthesis quality.
## 📢 News
- [2022.10.10] We release the first-version of DeVRF code and dataset!
- [2022.9.15] DeVRF got accepted by [**NeurIPS 2022**](https://nips.cc/)!
- [2022.6.1] We release the arXiv paper.
## 📝 Preparation
### Installation
```
git clone https://github.com/showlab/DeVRF.git
cd DeVRF
pip install -r requirements.txt
```
[Pytorch](https://pytorch.org/) and [torch_scatter](https://github.com/rusty1s/pytorch_scatter) installation is machine dependent, please install the correct version for your machine.Dependencies (click to expand)
- `PyTorch`, `numpy`, `torch_scatter`, `pytorch3d`: main computation.
- `scipy`, `lpips`: SSIM and LPIPS evaluation.
- `tqdm`: progress bar.
- `mmcv`: config system.
- `opencv-python`: image processing.
- `imageio`, `imageio-ffmpeg`: images and videos I/O.
- `Ninja`: to build the newly implemented torch extention just-in-time.
- `einops`: torch tensor shaping with pretty api.
### DeVRF dataset
We release all the synthetic and real-world DeVRF dataset on [link](https://drive.google.com/drive/folders/1IuYCTIcUJxPJs6fE9SKSlLPNGiWs3OaQ?usp=sharing). DeVRF dataset consists of 5 inward-facing synthetic scenes (lego|floating_robot|kuka|daisy|glove), 1 inward-facing real-world scene (flower_360), and 3 forward-facing real-world scenes (plant|rabbit|pig_toy). For each scene, we release the static data, dynamic data, and optical flow estimated using [RAFT](https://github.com/princeton-vl/RAFT). Please refer to the following data structure for an overview of DeVRF dataset.
```
DeVRF dataset
├── inward-facing
│ └── [lego|floating_robot|kuka|daisy|glove|flower_360]
│ ├── static
│ │ ├── [train|val|test]
│ │ └── transforms_[train|val|test].json
│ └── dynamic_4views
│ ├── [train|val|test]
│ ├── transforms_[train|val|test].json
│ ├── train_flow
│ └── train_flow_png
│
└── forward-facing
└── [plant|rabbit|pig_toy]
├── static
│ ├── [images|images_4|images_8]
│ └── poses_bounds.npy
└── dynamic_4views
├── bds.npy
├── poses.npy
└── [view1|view2|view3|view4]
├── [images|images_4|images_8]
├── images_4_flow
└── images_4_flow_png
```We additionally provide a light version of DeVRF dataset without optical flow on [link](https://drive.google.com/drive/folders/18-1aRhFd7Z9ugZCOAZ9ZmHcoc9eaRBcg?usp=sharing).
## 🏋️️ Experiment### Training
Stage 1: Train the static model using static scene data.
The static model part is almost the same as [DirectVoxGO](https://github.com/sunset1995/DirectVoxGO). The main difference is that we add an accumulated transmittance loss to encourage a clean background for forward-facing scenes. Please refer to [DirectVoxGO](https://github.com/sunset1995/DirectVoxGO) for more details.Note: Please enlarge the world_bound_scale in config file to establish a larger bounding box for dynamic scene modelling in the second stage. For DeVRF dataset, the world_bound_scale parameter is set within [1.05, 2.0].
```bash$ cd static_DirectVoxGO
$ python run.py --config configs/inward-facing/lego.py --render_test```
Stage 2: Train the dynamic model using dynamic scene data and the trained static model.
```bash
$ cd ..
$ python run.py --config configs/inward-facing/lego.py --render_test```
### Evaluation
To only evaluate the testset `PSNR`, `SSIM`, and `LPIPS` of the trained `lego` without re-training, run:
```bash
$ python run.py --config configs/inward-facing/lego.py --render_only --render_test \
--eval_ssim --eval_lpips_vgg --eval_lpips_alex
```
Use `--eval_lpips_alex` or `--eval_lpips_vgg` to evaluate LPIPS with pre-trained Alex net or VGG net.
### Render video
```bash$ python run.py --config configs/inward-facing/lego.py --render_only --render_video
```
### Reproduction: all config files to reproduce our results.
(click to expand)
```bash
$ ls configs/*configs/inward-facing:
lego.py floating_robot.py kuka.py daisy.py glove.py flower_360.pyconfigs/forward-facing:
plant.py rabbit.py pig_toy.py```
## 🎓 Citation
If you find our work helps, please cite our paper.
```bibtex
@article{liu2022devrf,
title={DeVRF: Fast Deformable Voxel Radiance Fields for Dynamic Scenes},
author={Liu, Jia-Wei and Cao, Yan-Pei and Mao, Weijia and Zhang, Wenqiao and Zhang, David Junhao and Keppo, Jussi and Shan, Ying and Qie, Xiaohu and Shou, Mike Zheng},
journal={arXiv preprint arXiv:2205.15723},
year={2022}
}
```
## ✉️ Contact
This repo is maintained by [Jiawei Liu](https://jia-wei-liu.github.io/). Questions and discussions are welcome via [email protected].
## 🙏 Acknowledgements
This codebase is based on [DirectVoxGO](https://github.com/sunset1995/DirectVoxGO).
## LICENSE
GPL