Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/shroominic/funcchain

⛓️ build cognitive systems, pythonic
https://github.com/shroominic/funcchain

funcchain jinja2 langchain langsmith llm minimalistic openai-functions prompt pydantic python-async pythonic

Last synced: 7 days ago
JSON representation

⛓️ build cognitive systems, pythonic

Awesome Lists containing this project

README

        

# funcchain

[![Version](https://badge.fury.io/py/funcchain.svg)](https://badge.fury.io/py/funcchain)
[![tests](https://github.com/shroominic/funcchain/actions/workflows/code-check.yml/badge.svg)](https://github.com/shroominic/funcchain/actions/workflows/code-check.yml)
![PyVersion](https://img.shields.io/pypi/pyversions/funcchain)
![License](https://img.shields.io/github/license/shroominic/funcchain)
![Downloads](https://img.shields.io/pypi/dm/funcchain)
[![Discord](https://img.shields.io/discord/1192334452110659664?label=discord)](https://discord.gg/TrwWWMXdtR)
GitHub Contributors
GitHub Last Commit
[![Pydantic v2](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/pydantic/pydantic/main/docs/badge/v2.json)](https://docs.pydantic.dev/latest/contributing/#badges)
[![Twitter Follow](https://img.shields.io/twitter/follow/shroominic?style=social)](https://x.com/shroominic)

```bash
pip install funcchain
```

## Introduction

`funcchain` is the *most pythonic* way of writing cognitive systems. Leveraging pydantic models as output schemas combined with langchain in the backend allows for a seamless integration of llms into your apps.
It utilizes OpenAI Functions or LlamaCpp grammars (json-schema-mode) for efficient structured output.
In the backend it compiles the funcchain syntax into langchain runnables so you can easily invoke, stream or batch process your pipelines.

[![Open in GitHub Codespaces](https://github.com/codespaces/badge.svg)](https://codespaces.new/ricklamers/funcchain-demo)

## Simple Demo

```python
from funcchain import chain
from pydantic import BaseModel

# define your output shape
class Recipe(BaseModel):
ingredients: list[str]
instructions: list[str]
duration: int

# write prompts utilising all native python features
def generate_recipe(topic: str) -> Recipe:
"""
Generate a recipe for a given topic.
"""
return chain() # <- this is doing all the magic

# generate llm response
recipe = generate_recipe("christmas dinner")

# recipe is automatically converted as pydantic model
print(recipe.ingredients)
```

## Complex Structured Output

```python
from pydantic import BaseModel, Field
from funcchain import chain

# define nested models
class Item(BaseModel):
name: str = Field(description="Name of the item")
description: str = Field(description="Description of the item")
keywords: list[str] = Field(description="Keywords for the item")

class ShoppingList(BaseModel):
items: list[Item]
store: str = Field(description="The store to buy the items from")

class TodoList(BaseModel):
todos: list[Item]
urgency: int = Field(description="The urgency of all tasks (1-10)")

# support for union types
def extract_list(user_input: str) -> TodoList | ShoppingList:
"""
The user input is either a shopping List or a todo list.
"""
return chain()

# the model will choose the output type automatically
lst = extract_list(
input("Enter your list: ")
)

# custom handler based on type
match lst:
case ShoppingList(items=items, store=store):
print("Here is your Shopping List: ")
for item in items:
print(f"{item.name}: {item.description}")
print(f"You need to go to: {store}")

case TodoList(todos=todos, urgency=urgency):
print("Here is your Todo List: ")
for item in todos:
print(f"{item.name}: {item.description}")
print(f"Urgency: {urgency}")
```

## Vision Models

```python
from funcchain import Image
from pydantic import BaseModel, Field
from funcchain import chain, settings

# set global llm using model identifiers (see MODELS.md)
settings.llm = "openai/gpt-4-vision-preview"

# everything defined is part of the prompt
class AnalysisResult(BaseModel):
"""The result of an image analysis."""

theme: str = Field(description="The theme of the image")
description: str = Field(description="A description of the image")
objects: list[str] = Field(description="A list of objects found in the image")

# easy use of images as input with structured output
def analyse_image(image: Image) -> AnalysisResult:
"""
Analyse the image and extract its
theme, description and objects.
"""
return chain()

result = analyse_image(Image.open("examples/assets/old_chinese_temple.jpg"))

print("Theme:", result.theme)
print("Description:", result.description)
for obj in result.objects:
print("Found this object:", obj)
```

## Seamless local model support

```python
from pydantic import BaseModel, Field
from funcchain import chain, settings

# auto-download the model from huggingface
settings.llm = "ollama/openchat"

class SentimentAnalysis(BaseModel):
analysis: str
sentiment: bool = Field(description="True for Happy, False for Sad")

def analyze(text: str) -> SentimentAnalysis:
"""
Determines the sentiment of the text.
"""
return chain()

# generates using the local model
poem = analyze("I really like when my dog does a trick!")

# promised structured output (for local models!)
print(poem.analysis)
```

## Features

- 🐍 pythonic
- 🔀 easy swap between openai or local models
- 🔄 dynamic output types (pydantic models, or primitives)
- 👁️ vision llm support
- 🧠 langchain_core as backend
- 📝 jinja templating for prompts
- 🏗️ reliable structured output
- 🔁 auto retry parsing
- 🔧 langsmith support
- 🔄 sync, async, streaming, parallel, fallbacks
- 📦 gguf download from huggingface
- ✅ type hints for all functions and mypy support
- 🗣️ chat router component
- 🧩 composable with langchain LCEL
- 🛠️ easy error handling
- 🚦 enums and literal support
- 📐 custom parsing types

## Documentation

[Checkout the docs here](https://shroominic.github.io/funcchain/) 👈

Also highly recommend to try and run the examples in the `./examples` folder.

## Contribution

You want to contribute? Thanks, that's great!
For more information checkout the [Contributing Guide](docs/contributing/dev-setup.md).
Please run the dev setup to get started:

```bash
git clone https://github.com/shroominic/funcchain.git && cd funcchain

./dev_setup.sh
```