Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/shujiahuang/geneview
Genomics data visualization in Python by using matplotlib.
https://github.com/shujiahuang/geneview
bioinformatics bioinformatics-tool data-visualization genomics-data-visualization matplotlib plotting python visualization
Last synced: about 2 months ago
JSON representation
Genomics data visualization in Python by using matplotlib.
- Host: GitHub
- URL: https://github.com/shujiahuang/geneview
- Owner: ShujiaHuang
- License: gpl-3.0
- Created: 2016-01-24T11:28:08.000Z (almost 9 years ago)
- Default Branch: master
- Last Pushed: 2023-12-27T01:36:44.000Z (12 months ago)
- Last Synced: 2024-10-11T15:09:58.154Z (2 months ago)
- Topics: bioinformatics, bioinformatics-tool, data-visualization, genomics-data-visualization, matplotlib, plotting, python, visualization
- Language: Python
- Homepage:
- Size: 10.8 MB
- Stars: 61
- Watchers: 6
- Forks: 8
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# geneview: A python package for visualizing genomics data
[![PyPI Version](https://img.shields.io/pypi/v/geneview.svg)](https://pypi.org/project/geneview/)
[![Python](https://img.shields.io/pypi/pyversions/geneview.svg?style=plastic)](https://badge.fury.io/py/geneview)
![Tests](https://github.com/ShujiaHuang/geneview/workflows/CI/badge.svg)
[![Code Coverage](https://codecov.io/gh/ShujiaHuang/geneview/branch/master/graph/badge.svg)](https://codecov.io/gh/ShujiaHuang/geneview)**geneview** is a library for making attractive and informative genomics graphics in Python.
It is built on top of [matplotlib](https://matplotlib.org/) and tightly integrated with the PyData
stack, including support for `numpy` and `pandas` data structures. And now it is actively developed.Some of the features that geneview offers are:
- High-level abstractions for structuring grids of plots that let you easily build complex visualizations.
- Functions for visualizing general genomics plots.## Installation
To install the released version, just do
```bash
pip install geneview
```This command will install `geneview` and all the dependencies.
## Quick start
### **Manhattan** and **Q-Q** plot
We use a PLINK2.x association output data `gwas.csv` which
is in [geneview-data](https://github.com/ShujiaHuang/geneview-data) directory,
as the input for the plots below. Here is the format preview of `gwas`:|**#CHROM**|**POS**|**ID**|**REF**|**ALT**|**A1**|**TEST**|**OBS_CT**|**BETA**|**SE**|**T_STAT**|**P**|
|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|
|chr1|904165|1\_904165|G|A|A|ADD|282|-0.0908897|0.195476|-0.464967|0.642344|
|chr1|1563691|1\_1563691|T|G|G|ADD|271|0.447021|0.422194|1.0588|0.290715|
|chr1|1707740|1\_1707740|T|G|G|ADD|283|0.149911|0.161387|0.928888|0.353805|
|chr1|2284195|1\_2284195|T|C|C|ADD|275|-0.024704|0.13966|-0.176887|0.859739|
|chr1|2779043|1\_2779043|T|C|T|ADD|272|-0.111771|0.139929|-0.79877|0.425182|
|chr1|2944527|1\_2944527|G|A|A|ADD|276|-0.054472|0.166038|-0.32807|0.743129|
|chr1|3803755|1\_3803755|T|C|T|ADD|283|-0.0392713|0.128528|-0.305547|0.760193|
|chr1|4121584|1\_4121584|A|G|G|ADD|279|0.120902|0.127063|0.951511|0.342239|
|chr1|4170048|1\_4170048|C|T|T|ADD|280|0.250807|0.143423|1.74873|0.0815274|
|chr1|4180842|1\_4180842|C|T|T|ADD|277|0.209195|0.146122|1.43165|0.153469|
|chr1|6053630|1\_6053630|T|G|G|ADD|269|-0.210917|0.129069|-1.63414|0.103503|
|chr1|7569602|1\_7569602|C|T|C|ADD|281|-0.136834|0.13265|-1.03154|0.303249|
|chr1|7575666|1\_7575666|T|C|C|ADD|277|-0.231278|0.159448|-1.45049|0.14815|#### Manhattan plot with default parameters
The `manhattanplot()` function in **geneview** takes a data frame with
columns containing the chromosomal name/id, chromosomal position,
P-value and optionally the name of SNP(e.g. rsID in dbSNP).By default, `manhattanplot()` looks for column names corresponding to
those outout by the plink2 association results, namely, `#CHROM`,
`POS`, `P`, and `ID`, although different column names can be
specificed by user. Calling `manhattanplot()` function with a data frame
of GWAS results as the single argument draws a basic manhattan plot,
defaulting to a darkblue and lightblue color scheme.```python
import matplotlib.pyplot as plt
import geneview as gv# load data
df = gv.load_dataset("gwas")
# Plot a basic manhattan plot with horizontal xtick labels and the figure will display in screen.
ax = gv.manhattanplot(data=df)
plt.show()
```![manhattan_plot.png](./examples/figures/manhattan_plot.png)
Rotate the x-axis tick label by setting `xticklabel_kws` to avoid label
overlap:```python
ax = manhattanplot(data=df, xticklabel_kws={"rotation": "vertical"})
```![manhattan_plot.png](./examples/figures/manhattan_plot_xviertical.png)
Or rotate the labels 45 degrees by setting `xticklabel_kws={"rotation": 45}`.
When run with default parameters, the `manhattanplot()` function draws
horizontal lines drawn at $-log_{10}{(1e-5)}$ for "**suggestive**"
associations and $-log_{10}{(5e-8)}$ for the "**genome-wide
significant**" threshold. These can be move to different locations or
turned off completely with the arguments `suggestiveline` and
`genomewideline`, respectively.```python
ax = manhattanplot(data=df,
suggestiveline=None, # Turn off suggestiveline
genomewideline=None, # Turn off genomewideline
xticklabel_kws={"rotation": "vertical"})
```![manhattan_plot_xviertical_noline.png](./examples/figures/manhattan_plot_xviertical_noline.png)
The behavior of the `manhattanplot` function changes slightly when
results from only a single chromosome is used. Here, instead of plotting
alternating colors and chromosome ID on the x-axis, the SNP\'s position
on the chromosome is plotted on the x-axis:```python
# plot only results of chromosome 8.
manhattanplot(data=df, CHR="chr8", xlabel="Chromosome 8")
```![manhattan_plot_xviertical_noline.png](./examples/figures/manhattan_plot_chr8.png)
`manhattanplot()` funcion has the ability to highlight SNPs with
significant GWAS signal and annotate the Top SNP, which has the lowest
P-value:```python
ax = manhattanplot(data=df,
sign_marker_p=1e-6, # highline the significant SNP with ``sign_marker_color`` color.
is_annotate_topsnp=True, # annotate the top SNP
xticklabel_kws={"rotation": "vertical"})
```![manhattan_anno_plot.png](./examples/figures/manhattan_plot_chr8.png)
Additionally, highlighting SNPs of interest can be combined with
limiting to a single chromosome to enable \"zooming\" into a particular
region containing SNPs of interest.![manhattan_anno_plot.png](./examples/figures/manhattan_anno_plot.png)
#### Show a better manhattan plot
Futher graphical parameters can be passed to the `manhattanplot()` function
to control thing like plot title, point character, size, colors, etc.
Here is the example:```python
import matplotlib.pyplot as plt
import geneview as gv# common parameters for plotting
plt_params = {
"pdf.fonttype": 42,
"font.sans-serif": "Arial",
"legend.fontsize": 14,
"axes.titlesize": 18,
"axes.labelsize": 16,
"xtick.labelsize": 14,
"ytick.labelsize": 14
}
plt.rcParams.update(plt_params)# Create a manhattan plot
f, ax = plt.subplots(figsize=(12, 4), facecolor="w", edgecolor="k")
xtick = set(["chr" + i for i in list(map(str, range(1, 10))) + ["11", "13", "15", "18", "21", "X"]])
_ = gv.manhattanplot(data=df,
marker=".",
sign_marker_p=1e-6, # Genome wide significant p-value
sign_marker_color="r",
snp="ID", # The column name of annotation information for top SNPs.title="Test",
xtick_label_set=xtick,
xlabel="Chromosome",
ylabel=r"$-log_{10}{(P)}$",sign_line_cols=["#D62728", "#2CA02C"],
hline_kws={"linestyle": "--", "lw": 1.3},is_annotate_topsnp=True,
ld_block_size=50000, # 50000 bp
text_kws={"fontsize": 12,
"arrowprops": dict(arrowstyle="-", color="k", alpha=0.6)},
ax=ax)
```
![manhattan.png](./examples/figures/manhattan.png)#### QQ plot with default parameters
The `qqplot()` function can be used to generate a Q-Q plot to visualize the
distribution of association "P-value". The `qqplot()` function takes a vector
of P-values as its the only required argument.```python
import matplotlib.pyplot as plt
import geneview as gv# load data
df = gv.load_dataset("gwas")
# Plot a basic manhattan plot with horizontal xtick labels and the figure will display in screen.
ax = gv.qqplot(data=df["P"])
plt.show()```
![qq.png](./examples/figures/qq.png)
#### Show a better QQ plot
Futher graphical parameters can be passed to ``qqplot()`` to control the plot
title, axis labels, point characters, colors, points sizes, etc. Here is the
example:```python
import matplotlib.pyplot as plt
import geneview as gvf, ax = plt.subplots(figsize=(6, 6), facecolor="w", edgecolor="k")
_ = gv.qqplot(data=df["P"],
marker="o",
title="Test",
xlabel=r"Expected $-log_{10}{(P)}$",
ylabel=r"Observed $-log_{10}{(P)}$",
ax=ax)
```- [More tutorials about GWAS](./docs/tutorial/gwas_plot.ipynb)
### Admixture plot
Generate **Admixture** plot from the raw admixture output result:#### simple example for admixtureplot
```python
import matplotlib.pyplot as plt
from geneview import load_dataset
from geneview import admixtureplotf, ax = plt.subplots(1, 1, figsize=(14, 2), facecolor="w", constrained_layout=True, dpi=300)
admixtureplot(data=load_dataset("admixture_output.Q"),
population_info=load_dataset("admixture_population.info"),
ylabel_kws={"rotation": 45, "ha": "right"},
ax=ax)
```
![admixtureplot](./examples/figures/admixture.png)or
```python
import matplotlib.pyplot as plt
import geneview as gvadmixture_output_fn = gv.load_dataset("admixture_output.Q")
population_group_fn = gv.load_dataset("admixture_population.info")# define the order for population to plot
pop_group_1kg = ["KHV", "CDX", "CHS", "CHB", "JPT", "BEB", "STU", "ITU", "GIH", "PJL", "FIN",
"CEU", "GBR", "IBS", "TSI", "PEL", "PUR", "MXL", "CLM", "ASW", "ACB", "GWD",
"MSL", "YRI", "ESN", "LWK"]f, ax = plt.subplots(1, 1, figsize=(14, 2), facecolor="w", constrained_layout=True, dpi=300)
gv.popgen.admixtureplot(data=admixture_output_fn,
population_info=population_group_fn,
edgewidth=2.0,
group_order=pop_group_1kg,
shuffle_popsample_kws={"frac": 0.5},
ylabel_kws={"rotation": 45, "ha": "right"},
ax=ax)
```![admixtureplot](./examples/figures/admixture.png)
- [The format of input files and more details about admixtureplot](./docs/tutorial/admixture.ipynb)
### Venn plots
**Venn diagrams for 2, 3, 4, 5, 6 sets.**
![Venn.png](./examples/figures/venn.png)
#### Minimal venn plot example
```python
import geneview as gvtable = {
"Dataset 1": {"A", "B", "D", "E"},
"Dataset 2": {"C", "F", "B", "G"},
"Dataset 3": {"J", "C", "K"}
}
ax = gv.venn(table)```
![venn.png](./examples/figures/venn3.png)
#### Manual adjustment of petal labels
If necessary, the labels on the petals (i.e., various intersections in the
Venn diagram) can be adjusted manually.For this, `generate_petal_labels()` can be called first to get the
`petal_labels` dictionary, which can be modified.After modification, pass petal_labels to functions `venn()`.
```python
from numpy.random import choice
import geneview as gvdataset_dict = {
name: set(choice(1000, 250, replace=False))
for name in list("ABCD")
}petal_labels = gv.generate_petal_labels(dataset_dict.values(), fmt="{logic}\n({percentage:.1f}%)")
ax = gv.venn(data=petal_labels, names=list(dataset_dict.keys()), legend_use_petal_color=True)```
![venn4.png](./examples/figures/venn4.png)- [More tutorials about venn](./docs/tutorial/venn.ipynb)
## Dependencies
**Geneview** only supports Python 3 and no longer supports Python 2.
Installation requires [numpy](http://www.numpy.org/),
[scipy](http://www.scipy.org/),
[pandas](http://pandas.pydata.org/), and
[matplotlib](http://matplotlib.org/).
Some functions will use
[statsmodels](http://statsmodels.sourceforge.net/).We need the data structures: `DataFrame` and `Series` in **pandas**.
It's easy and worth to learn, click
[here](http://pda.readthedocs.org/en/latest/chp5.html) to see more detail
tutorial for these two data type.## License
Released under a GPL-3.0 license