Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/shyamsn97/mario-gpt

[Neurips 2023] Generating Mario Levels with GPT2. Code for the paper "MarioGPT: Open-Ended Text2Level Generation through Large Language Models" https://arxiv.org/abs/2302.05981
https://github.com/shyamsn97/mario-gpt

Last synced: 25 days ago
JSON representation

[Neurips 2023] Generating Mario Levels with GPT2. Code for the paper "MarioGPT: Open-Ended Text2Level Generation through Large Language Models" https://arxiv.org/abs/2302.05981

Awesome Lists containing this project

README

        

# MarioGPT: Open-Ended Text2Level Generation through Large Language Models
[![Paper](https://img.shields.io/badge/paper-arxiv.2302.05981-B31B1B.svg)](https://arxiv.org/abs/2302.05981)
[![PyPi version](https://badgen.net/pypi/v/mario-gpt/)](https://pypi.org/project/mario-gpt)
HuggingFace Spaces
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/16KR9idJUim6RAiyPASoQAaC768AvOGxP?usp=sharing)

[Playing Generated Level](#interacting-with-levels) | Generated Level
:-------------------------:|:-------------------------:
![alt text](static/example_interactive.gif) | ![alt text](static/test_level.png)

How does it work?
----

Architecture | Example Prompt Generations
:-------------------------:|:-------------------------:
![alt text](static/architecture.png) | ![alt text](static/prompt-samples.png)

MarioGPT is a finetuned GPT2 model (specifically, [distilgpt2](https://huggingface.co/distilgpt2)), that is trained on a subset Super Mario Bros and Super Mario Bros: The Lost Levels levels, provided by [The Video Game Level Corpus](https://github.com/TheVGLC/TheVGLC). MarioGPT is able to generate levels, guided by a simple text prompt. This generation is not perfect, but we believe this is a great first step more controllable and diverse level / environment generation. Forward generation:

![alt text](static/timelapse_0.gif)

Requirements
----
- python3.8+

Installation
---------------
from pypi
```
pip install mario-gpt
```

or from source
```
git clone [email protected]:shyamsn97/mario-gpt.git
python setup.py install
```

Generating Levels
-------------

Since our models are built off of the amazing [transformers](https://github.com/huggingface/transformers) library, we host our model in https://huggingface.co/shyamsn97/Mario-GPT2-700-context-length

This code snippet is the minimal code you need to generate a mario level!

```python
from mario_gpt import MarioLM, SampleOutput

# pretrained_model = shyamsn97/Mario-GPT2-700-context-length

mario_lm = MarioLM()

# use cuda to speed stuff up
# import torch
# device = torch.device('cuda')
# mario_lm = mario_lm.to(device)

prompts = ["many pipes, many enemies, some blocks, high elevation"]

# generate level of size 1400, pump temperature up to ~2.4 for more stochastic but playable levels
generated_level = mario_lm.sample(
prompts=prompts,
num_steps=1400,
temperature=2.0,
use_tqdm=True
)

# show string list
generated_level.level

# show PIL image
generated_level.img

# save image
generated_level.img.save("generated_level.png")

# save text level to file
generated_level.save("generated_level.txt")

# play in interactive
generated_level.play()

# run Astar agent
generated_level.run_astar()

# Continue generation
generated_level_continued = mario_lm.sample(
seed=generated_level,
prompts=prompts,
num_steps=1400,
temperature=2.0,
use_tqdm=True
)

# load from text file
loaded_level = SampleOutput.load("generated_level.txt")

# play from loaded (should be the same level that we generated)
loaded_level.play()
...
```

Training
-------------
The code to train MarioGPT is pretty simple and straightforward, the training class is located [here](mario_gpt/trainer.py), with a small example [notebook](notebooks/Train.ipynb)

```python
import torch
from mario_gpt import MarioDataset, MarioLM, TrainingConfig, MarioGPTTrainer

# create basic gpt model
BASE = "distilgpt2"
mario_lm = MarioLM(lm_path=BASE, tokenizer_path=BASE)

# create dataset
dataset = MarioDataset(mario_lm.tokenizer)

# create training config and trainer
config = TrainingConfig(save_iteration=10)
trainer = MarioGPTTrainer(mario_lm, dataset, config=config)

# train for 100 iterations!
trainer.train(100, batch_size=1)
```

##### See [notebook](notebooks/Sampling.ipynb) for a more in depth tutorial to generate levels

Interacting with Levels
-------------

Right now there are two ways to interact with generated levels:

1) [Huggingface demo](https://huggingface.co/spaces/multimodalart/mariogpt) -- Thanks to the amazing work by [multimodalart](https://github.com/multimodalart), you can generate and play levels interactively in the browser! In addition, gpus are provided so you don't have to own one yourself.
2) Using the [play and astar methods](mario_gpt/simulator/simulator.py). These require you to have java installed on your computer (Java 8+ tested). For interactive, use the `play()` method and for astar use the `run_astar` method. Example:

```python
from mario_gpt import MarioLM

mario_lm = MarioLM()

prompts = ["many pipes, many enemies, some blocks, high elevation"]

generated_level = mario_lm.sample(
prompts=prompts,
num_steps=1400,
temperature=2.0,
use_tqdm=True
)

# play in interactive
generated_level.play()

# run Astar agent
generated_level.run_astar()
```

## Future Plans
Here's a list of some stuff that will be added to the codebase!

- [x] Basic inference code
- [x] Add MarioBert Model
- [x] Add Interactive simulator
- [x] Training code from paper
- [ ] Inpainting functionality from paper
- [ ] Open-ended level generation code
- [ ] Different generation methods (eg. constrained beam search, etc.)

Authors
-------
Shyam Sudhakaran , , https://shyamsn97.github.io/

Miguel González-Duque ,

Claire Glanois ,

Matthias Freiberger ,

Elias Najarro ,

Sebastian Risi , , https://sebastianrisi.com/

Citation
------
If you use the code for academic or commecial use, please cite the associated paper:
```
@misc{https://doi.org/10.48550/arxiv.2302.05981,
doi = {10.48550/ARXIV.2302.05981},

url = {https://arxiv.org/abs/2302.05981},

author = {Sudhakaran, Shyam and González-Duque, Miguel and Glanois, Claire and Freiberger, Matthias and Najarro, Elias and Risi, Sebastian},

keywords = {Artificial Intelligence (cs.AI), Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},

title = {MarioGPT: Open-Ended Text2Level Generation through Large Language Models},

publisher = {arXiv},

year = {2023},

copyright = {arXiv.org perpetual, non-exclusive license}
}

```