Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/sicara/gpumonitor
TF 2.x and PyTorch Lightning Callbacks for GPU monitoring
https://github.com/sicara/gpumonitor
gpu-monitoring pytorch-lightning tensorflow
Last synced: about 1 month ago
JSON representation
TF 2.x and PyTorch Lightning Callbacks for GPU monitoring
- Host: GitHub
- URL: https://github.com/sicara/gpumonitor
- Owner: sicara
- License: mit
- Created: 2020-04-27T07:12:34.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2020-06-08T10:25:18.000Z (over 4 years ago)
- Last Synced: 2024-09-30T11:04:03.974Z (about 2 months ago)
- Topics: gpu-monitoring, pytorch-lightning, tensorflow
- Language: Python
- Homepage:
- Size: 2.08 MB
- Stars: 92
- Watchers: 8
- Forks: 7
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# gpumonitor
[![Pypi Version](https://img.shields.io/pypi/v/gpumonitor.svg)](https://pypi.org/project/gpumonitor/)
![Licence](https://img.shields.io/pypi/l/gpumonitor)
![Frameworks](https://img.shields.io/badge/Frameworks-PyTorchLightning%20|%20TensorFlow-blue.svg)`gpumonitor` gives you **stats about GPU** usage during execution of your scripts and trainings,
as [TensorFlow](https://www.github.com/tensorflow/tensorflow) or
[Pytorch Lightning](https://github.com/PyTorchLightning/pytorch-lightning) callbacks.
## Installation
Installation can be done directly from this repository:
```
pip install gpumonitor
```## Getting started
### Option 1: In your scripts
```python
monitor = gpumonitor.GPUStatMonitor(delay=1)# Your instructions here
# [...]monitor.stop()
monitor.display_average_stats_per_gpu()
```It keeps track of the average of GPU statistics. To reset the average and start from fresh, you can also reset the monitor:
```python
monitor = gpumonitor.GPUStatMonitor(delay=1)# Your instructions here
# [...]monitor.display_average_stats_per_gpu()
monitor.reset()# Some other instructions
# [...]monitor.display_average_stats_per_gpu()
```### Option 2: Callbacks
Add the following callback to your training loop:
For [TensorFlow](https://www.github.com/tensorflow/tensorflow),
```python
from gpumonitor.callbacks.tf import TFGpuMonitorCallbackmodel.fit(x, y, callbacks=[TFGpuMonitorCallback(delay=0.5)])
```For [PyTorch Lightning](https://github.com/PyTorchLightning/pytorch-lightning),
```python
from gpumonitor.callbacks.lightning import PyTorchGpuMonitorCallbacktrainer = pl.Trainer(callbacks=[PyTorchGpuMonitorCallback(delay=0.5)])
trainer.fit(model)
```## Display Format
You can customize the display format according to the `gpustat` options. For example, display of watts consumption,
fan speed are available. To know which options you can change, refer to:- [TensorFlow callback example](https://github.com/sicara/gpumonitor/blob/42237f423254e8fc7ae21e8f2811533a4264064d/scripts/tf_training.py#L16)
- [`gpustat print_to()` docstring](https://github.com/wookayin/gpustat/blob/aba85f8eba9f7861022eb3dcc06ff771b451b3e1/gpustat/core.py#L178)## Sources
- Built on top of [GPUStat](https://github.com/wookayin/gpustat)
- Separate thread loop coming from [gputil](https://github.com/anderskm/gputil)