Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/siddhantborse/atmosviz

Atmos Viz is a Python-based project designed to analyze, visualize, and predict global temperature trends across various cities and countries using time-series analysis and advanced data science techniques. Leveraging historical climate data, this project integrates machine learning models, geospatial mapping, and interactive visualizations to unco
https://github.com/siddhantborse/atmosviz

geopandas geospatial-analysis gis matplotlib numpy pandas plotly python scikit-learn seaborn shapefiles time timeseries-analysis timeseries-data

Last synced: 1 day ago
JSON representation

Atmos Viz is a Python-based project designed to analyze, visualize, and predict global temperature trends across various cities and countries using time-series analysis and advanced data science techniques. Leveraging historical climate data, this project integrates machine learning models, geospatial mapping, and interactive visualizations to unco

Awesome Lists containing this project

README

        

# 🌍 **Atmos Viz: Global Temperature Analysis and Prediction**
### **Overview**
**Atmos Viz** is a Python-based project designed to analyze, visualize, and predict global temperature trends across various cities and countries. Leveraging historical climate data, this project combines **machine learning models**, **geospatial mapping**, and **interactive visualizations** to uncover meaningful insights into temperature variations over time.

---

### **Project Features**
- **Data Preprocessing**: Efficiently handles large-scale datasets, cleans missing values, and extracts features like **Year**, **Month**, and cyclic seasonal trends.
- **Geospatial Mapping**: Visualizes temperature data geographically using **shapefiles** and tools like **GeoPandas** and **Plotly**.
- **Machine Learning Prediction**: Forecasts future temperature trends using **Linear Regression** and **Random Forest** models.
- **Interactive Visualizations**: Generates engaging charts, heatmaps, and world maps for better analysis and understanding.
- **Performance Evaluation**: Measures model accuracy using metrics like **MAE**, **RMSE**, and **R²**.

---

### **Technologies Used**
- **Programming Language**: Python
- **Libraries**:
- Data Handling: `Pandas`, `NumPy`
- Visualization: `Matplotlib`, `Seaborn`, `Plotly`
- Geospatial Mapping: `GeoPandas`
- Machine Learning: `Scikit-learn`
- GIS Tools: **Shapefiles**

---

### **Project Workflow**
1. **Data Preprocessing**
- Load the temperature dataset (sourced from Kaggle, originally from Berkeley Earth).
- Clean and normalize missing temperature values using **monthly means**.
- Extract cyclic seasonal trends using sine and cosine transformations.

2. **Model Development**
- Use **Linear Regression** and **Random Forest** for predictive modeling.
- Train models using features like **Year**, **sin_month**, and **cos_month**.
- Evaluate performance using **MAE**, **RMSE**, and **R²** metrics.

3. **Visualization**
- **Geospatial Maps**: Display temperature data using **GeoPandas** and **Plotly**.
- **Time-Series Trends**: Plot temperature trends with trendlines for specific cities.
- **Interactive Maps**: Visualize data with **hover information** for cities on the map.
- **Heatmaps & Boxplots**: Analyze monthly and regional temperature variations.

## Contributions
### Contributions are welcome! If you'd like to improve this project, please fork the repository and create a pull request.

## Contact
### For any queries or suggestions, feel free to contact me:

## Email: [email protected]
## VPortfolio: Siddhant Borse
## ⭐ If you like this project, star it on GitHub! ⭐

---

### **Project Directory Structure**
```plaintext
Atmos-Viz/

├── Package/
│ ├── data_preprocessing.py # Data loading, cleaning, and feature extraction
│ ├── models.py # Machine learning model training
│ ├── evaluation.py # Model evaluation metrics
│ ├── viz.py # Visualization functions (maps, charts, heatmaps)

├── shapefiles/ # GIS shapefiles for mapping

├── data/ # Raw and preprocessed temperature datasets

├── main.py # Main script for model execution and visualization

├── requirements.txt # List of dependencies

└── README.md # Project documentation