https://github.com/sile/nasbench-rs
A Rust port of NASBench: https://github.com/google-research/nasbench
https://github.com/sile/nasbench-rs
benchmark-datasets neural-architecture-search rust
Last synced: about 1 month ago
JSON representation
A Rust port of NASBench: https://github.com/google-research/nasbench
- Host: GitHub
- URL: https://github.com/sile/nasbench-rs
- Owner: sile
- License: mit
- Created: 2019-05-11T09:19:31.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2024-12-17T04:34:19.000Z (5 months ago)
- Last Synced: 2025-03-25T07:12:46.839Z (about 2 months ago)
- Topics: benchmark-datasets, neural-architecture-search, rust
- Language: Rust
- Size: 43.9 KB
- Stars: 2
- Watchers: 3
- Forks: 2
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
nasbench
=========[](https://crates.io/crates/nasbench)
[](https://docs.rs/nasbench)
[](https://travis-ci.org/sile/nasbench-rs)
[](https://codecov.io/gh/sile/nasbench/branch-rs/master)
[](LICENSE)A Rust port of [google-research/nasbench][NASBench].
[NASBench]: https://github.com/google-research/nasbench
Motivations
-----------Of course, the primary purpose of this crate is to make [NASBench] dataset available in Rust.
Besides, another aim is to reduce dataset loading time.
By using a compact binary data format, this crate can reduce the loading time drastically.
For example, on my laptop, [google-research/nasbench][NASBench] requires about 200 seconds
for loading the full dataset. By contrast, this crate only needs a few seconds to complete the loading.Examples
--------First of all, you have to convert a NASBench dataset to this crate's format as follows:
```console
$ wget https://storage.googleapis.com/nasbench/nasbench_full.tfrecord
$ nasbench convert nasbench_full.tfrecord nasbench_full.bin
$ ls -lh
-rw-rw-rw- 1 foo foo 328M May 12 16:47 nasbench_full.bin
-rw-rw-rw- 1 foo foo 2.0G May 12 16:45 nasbench_full.tfrecord
```Then, you can query the evaluation metrics associated with a model (`ops` and `adjacency`):
```console
$ nasbench query nasbench_full.bin \
--adjacency 0100110001000000010010000010000001000000010000000 \
--ops input conv3x3-bn-relu maxpool3x3 conv3x3-bn-relu \
conv3x3-bn-relu conv1x1-bn-relu output
EvaluationMetrics {
training_time: 1769.1279296875,
training_accuracy: 1.0,
validation_accuracy: 0.9241786599159241,
test_accuracy: 0.9211738705635071
}
```Rust code corresponded to the above command:
```rust
use nasbench::{AdjacencyMatrix, ModelSpec, NasBench, Op};// Loads the dataset.
let nasbench = NasBench::new("nasbench_full.bin")?;// Queries a model.
let ops = vec![Op::Input, Op::Conv3x3, Op::MaxPool3x3, Op::Conv3x3,
Op::Conv3x3, Op::Conv1x1, Op::Output];
let adjacency = "0100110001000000010010000010000001000000010000000".parse()?;
let model_spec = ModelSpec::new(ops, adjacency)?;
println!("{:?}", nasbench.models().get(&model_spec));
```Limitations
------------[google-research/nasbench][NASBench] provides `NASBench.evaluate()` method to train and evaluate
models from scratch, but this crate does not.References
----------- [NAS-Bench-101: Towards Reproducible Neural Architecture Search](https://arxiv.org/abs/1902.09635)