Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/simonboothroyd/tico
Torch-based internal coordinate geometry optimization
https://github.com/simonboothroyd/tico
Last synced: 2 months ago
JSON representation
Torch-based internal coordinate geometry optimization
- Host: GitHub
- URL: https://github.com/simonboothroyd/tico
- Owner: SimonBoothroyd
- License: mit
- Created: 2024-02-04T21:35:54.000Z (11 months ago)
- Default Branch: main
- Last Pushed: 2024-02-09T13:10:26.000Z (11 months ago)
- Last Synced: 2024-02-09T14:32:58.145Z (11 months ago)
- Language: Python
- Homepage: https://simonboothroyd.github.io/tico/
- Size: 1000 KB
- Stars: 5
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
tico
Torch-based internal coordinate geometry optimization.
---
The `tico` framework provides utilities for optimizing the geometry of molecules in
internal coordinates. It is heavily based off of [geomeTRIC](https://github.com/leeping/geomeTRIC), but aims to improve
the performance using PyTorch, and bypassing some of the QA checks. For a more robust
option, consider using [geomeTRIC](https://github.com/leeping/geomeTRIC) instead.Because `tico` is heavily based off of `geomeTRIC`, please consider citing the original
package if you use `tico` in your work:```text
@article{wang2016geometry,
title={Geometry optimization made simple with translation and rotation coordinates},
author={Wang, Lee-Ping and Song, Chenchen},
journal={The Journal of chemical physics},
volume={144},
number={21},
year={2016},
publisher={AIP Publishing}
}
```## Installation
This package can be installed using `conda` (or `mamba`, a faster version of `conda`):
```shell
mamba install -c conda-forge tico
```## Getting Started
To geometry of a molecule can be optimized using the `tico.opt.optimize` function. It
takes as input and initial set of cartesian coordinates, and a function that returns
the energy and gradient of the molecule at a given set of coordinates.Creating a molecule to optimize can be easily done using the `openff.toolkit` package:
```python
import openff.toolkit
import torchff = openff.toolkit.ForceField("openff_unconstrained-2.1.0.offxml")
mol = openff.toolkit.Molecule.from_smiles("CCO")
mol.generate_conformers(n_conformers=1)bond_idxs = torch.tensor(
[[bond.atom1_index, bond.atom2_index] for bond in mol.bonds]
)
coords = torch.tensor(mol.conformers[0].m_as("bohr")).double()
```An internal coordinate representation of the molecule can then be created using the
helpers in the `tico.ic` module:```python
import tico.ic# Create a primitive internal coordinates representation
ic = tico.ic.RIC.from_coords(coords, bond_idxs)
# Or a usually more efficient delocalized internal coordinates representation
ic = tico.ic.DLC.from_coords(coords, bond_idxs)# If using the delocalized internal coordinates, optional constraints can be added.
# For example, to fix the distance between atoms 0 and 1 to 2.0 bohr:
constr = {tico.ic.ICType.DISTANCE: (torch.tensor([[0, 1]]), torch.tensor([2.0]))}
ic = tico.ic.DLC.from_coords(coords, bond_idxs, constr)
```An example energy function that uses OpenMM may look like:
```python
import openmm
import openmm.unit
import torchsystem = ff.create_openmm_system(mol.to_topology())
context = openmm.Context(
system,
openmm.VerletIntegrator(1.0),
openmm.Platform.getPlatformByName("Reference"),
)def energy_fn(c):
c = c.numpy().reshape(-1, 3) * openmm.unit.bohr
context.setPositions(c)state = context.getState(getEnergy=True, getForces=True)
energy = state.getPotentialEnergy() / openmm.unit.AVOGADRO_CONSTANT_NA
gradient = -state.getForces(asNumpy=True) / openmm.unit.AVOGADRO_CONSTANT_NAenergy = energy.value_in_unit(openmm.unit.hartree)
gradient = gradient.value_in_unit(openmm.unit.hartree / openmm.unit.bohr).flatten()return torch.tensor(energy), torch.tensor(gradient)
```The optimization can then be performed using:
```python
import tico.optatomic_nums = torch.tensor([atom.atomic_number for atom in mol.atoms])
history, converged = tico.opt.optimize(coords, ic, energy_fn, atomic_nums)
assert convergedcoords_final = history[-1].coords
```The `tico.td` module contains additional helpers for performing torsion scans around
given bonds:```python
import tico.td# scan using torsiondrive with wavefront propagation
params = tico.td.Params(driver=tico.td.WFP())
# OR for faster (but likely higher energy structures), just do a linear scan
params = tico.td.Params(driver=tico.td.Simple())results = tico.td.torsion_drive(
coords, bond_idxs, dihedral, energy_fn, atomic_nums, params
)
```The energies of the torsion scan can be easily plotted:
```python
angles = sorted(results)
energies = [results[angle][1] for angle in angles]from matplotlib import pyplot
pyplot.plot(angles, energies)
pyplot.xlabel("Angle [deg]")
pyplot.ylabel("Energy [Eh]")
pyplot.legend()
pyplot.show()
```and the optimized geometries can be extracted:
```python
import openff.unitsmol._conformers = [
coords.numpy() * openff.units.unit.bohr for coords, _ in results.values()
]
mol.to_file("td.xyz", "XYZ")
```## License
The main package is release under the [MIT license](LICENSE). Parts of the package are
largely inspired by [geomeTRIC](https://github.com/leeping/geomeTRIC), see the [LICENSE-3RD-PARTY](LICENSE-3RD-PARTY) file for the
license of the original code.