Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/simonw/shapefile-to-sqlite

Load shapefiles into a SQLite (optionally SpatiaLite) database
https://github.com/simonw/shapefile-to-sqlite

datasette datasette-io datasette-tool gis shapefiles spatialite sqlite

Last synced: 2 months ago
JSON representation

Load shapefiles into a SQLite (optionally SpatiaLite) database

Awesome Lists containing this project

README

        

# shapefile-to-sqlite

[![PyPI](https://img.shields.io/pypi/v/shapefile-to-sqlite.svg)](https://pypi.org/project/shapefile-to-sqlite/)
[![Changelog](https://img.shields.io/github/v/release/simonw/shapefile-to-sqlite?include_prereleases&label=changelog)](https://github.com/simonw/shapefile-to-sqlite/releases)
[![Tests](https://github.com/simonw/shapefile-to-sqlite/workflows/Test/badge.svg)](https://github.com/simonw/shapefile-to-sqlite/actions?query=workflow%3ATest)
[![License](https://img.shields.io/badge/license-Apache%202.0-blue.svg)](https://github.com/simonw/shapefile-to-sqlite/blob/main/LICENSE)

Load shapefiles into a SQLite (optionally SpatiaLite) database.

Project background: [Things I learned about shapefiles building shapefile-to-sqlite](https://simonwillison.net/2020/Feb/19/shapefile-to-sqlite/)

## How to install

$ pip install shapefile-to-sqlite

## How to use

You can run this tool against a shapefile file like so:

$ shapefile-to-sqlite my.db features.shp

This will load the geometries as GeoJSON in a text column.

## Using with SpatiaLite

If you have [SpatiaLite](https://www.gaia-gis.it/fossil/libspatialite/index) available you can load them as SpatiaLite geometries like this:

$ shapefile-to-sqlite my.db features.shp --spatialite

The data will be loaded into a table called `features` - based on the name of the shapefile. You can specify an alternative table name using `--table`:

$ shapefile-to-sqlite my.db features.shp --table=places --spatialite

The tool will search for the SpatiaLite module in the following locations:

- `/usr/lib/x86_64-linux-gnu/mod_spatialite.so`
- `/usr/local/lib/mod_spatialite.dylib`

If you have installed the module in another location, you can use the `--spatialite_mod=xxx` option to specify where:

$ shapefile-to-sqlite my.db features.shp \
--spatialite_mod=/usr/lib/mod_spatialite.dylib

You can use the `--spatial-index` option to create a spatial index on the `geometry` column:

$ shapefile-to-sqlite my.db features.shp --spatial-index

You can omit `--spatialite` if you use either `--spatialite-mod` or `--spatial-index`.

## Projections

By default, this tool will attempt to convert geometries in the shapefile to the WGS 84 projection, for best conformance with the [GeoJSON specification](https://tools.ietf.org/html/rfc7946).

If you want it to leave the data in whatever projection was used by the shapefile, use the `--crs=keep` option.

You can convert the data to another output projection by passing it to the `--crs` option. For example, to convert to [EPSG:2227](https://epsg.io/2227) (California zone 3) use `--crs=espg:2227`.

The full list of formats accepted by the `--crs` option is [documented here](https://pyproj4.github.io/pyproj/stable/api/crs.html#pyproj.crs.CRS.__init__).

## Extracting columns

If your data contains columns with a small number of heavily duplicated values - the names of specific agencies responsible for parcels of land for example - you can extract those columns into separate lookup tables referenced by foreign keys using the `-c` option:

$ shapefile-to-sqlite my.db features.shp -c agency

This will create a `agency` table with `id` and `name` columns, and will create the `agency` column in your main table as an integer foreign key reference to that table.

The `-c` option can be used multiple times.

[CPAD_2020a_Units](https://calands.datasettes.com/calands/CPAD_2020a_Units) is an example of a table created using the `-c` option.