https://github.com/sinhasomya100/task-7
Get Basic Sales Summary from a Tiny SQLite Database using Python
https://github.com/sinhasomya100/task-7
jupiter-notebook matplotlib pandas python3 sqlite3
Last synced: 3 months ago
JSON representation
Get Basic Sales Summary from a Tiny SQLite Database using Python
- Host: GitHub
- URL: https://github.com/sinhasomya100/task-7
- Owner: sinhasomya100
- Created: 2025-04-20T06:08:50.000Z (9 months ago)
- Default Branch: main
- Last Pushed: 2025-04-20T06:51:13.000Z (9 months ago)
- Last Synced: 2025-04-23T11:42:56.550Z (9 months ago)
- Topics: jupiter-notebook, matplotlib, pandas, python3, sqlite3
- Language: Jupyter Notebook
- Homepage:
- Size: 1.18 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# 📦 Task-7 – Get Basic Sales Summary from a Tiny SQLite Database using Python
---
## 📊 Sales Data Analysis with Python & SQLite
This project demonstrates how to use **Python**, **SQLite**, **SQL queries**, and **Matplotlib** to analyze and visualize sales data directly from a database.
---
| File Name | Description |
|---------------------------------------|-----------------------------------------------------|
| `TASK 7 DA [1]` | Internship task description for Task 8 |
| `Task_7_Sales_Analysis_ipynb.ipynb` | Jupiter Notebook file on google collab |
| `TASK 7th.pdf` | Step by Step Summary with ouputs |
| `Interview Q/A` | Interview Q/A |
| `README.md` | Overview and documentation of the project |
| `png2pdf.pdf` |Summary of Task 7 using Canva |
---
## 📁 Project Overview
- Created a **SQLite database** with a `sales` table
- Inserted **sample sales data** (products, quantity, price)
- Ran SQL queries inside Python to get:
- ✅ Total quantity sold
- ✅ Total revenue
- ✅ Revenue by product
- Visualized results using **Matplotlib bar chart**
- Displayed summary in a neat table using **pandas**
---
## 📦 Technologies Used
- Python 3.x
- SQLite (with `sqlite3` module)
- SQL (`GROUP BY`, `SUM`)
- pandas
- matplotlib
---
## 📑 Steps Performed in the Notebook
-- Connected to SQLite database using Python



---
--Executed SQL query to fetch product-wise total quantity and revenue


---
--Loaded SQL result into pandas
--Plotted a charts using matplotlib


--Summary table

---
💡 What I Learnt
-Connecting Python with SQLite databases
-Writing and running SQL queries inside Python
-Performing aggregation with GROUP BY
-Using pandas for tabular data handling
---
📬 Contact
If you have any questions, feel free to reach out:
https://www.linkedin.com/posts/activity-7321762537123782656-d6jB?utm_source=share&utm_medium=member_desktop&rcm=ACoAADazOB0BRuax1fAhu4L7QyodlFZtYz-UgyU