Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/skeeto/hash-prospector

Automated integer hash function discovery
https://github.com/skeeto/hash-prospector

Last synced: 4 days ago
JSON representation

Automated integer hash function discovery

Awesome Lists containing this project

README

        

# Hash Function Prospector

This is a little tool for automated [integer hash function][wang]
discovery. It generates billions of [integer hash functions][jenkins] at
random from a selection of [nine reversible operations][rev] ([also][]).
The generated functions are JIT compiled and their avalanche behavior is
evaluated. The current best function is printed out in C syntax.

The *avalanche score* is the number of output bits that remain "fixed"
on average when a single input bit is flipped. Lower scores are better.
Ideally the score is 0 — e.g. every output bit flips with a 50% chance
when a single input bit is flipped.

Prospector can generate both 32-bit and 64-bit integer hash functions.
Check the usage (`-h`) for the full selection of options. Due to the JIT
compiler, only x86-64 is supported, though the functions it discovers
can, of course, be used anywhere.

Article: [Prospecting for Hash Functions][article]

## Discovered Hash Functions

There are two useful classes of hash functions discovered by the
prospector and the other helper utilities here. Both use an
*xorshift-multiply-xorshift* construction, but with a different number
of rounds.

### Two round functions

**Update**: [TheIronBorn has used combinatorial optimization][best] to
discover the best known parameters for this construction:

[16 21f0aaad 15 d35a2d97 15] = 0.10760229515479501

* * *

This 32-bit, two-round permutation has a particularly low bias and even
beats the venerable MurmurHash3 32-bit finalizer by a tiny margin. The
hash function construction was discovered by the prospector, then the
parameters were tuned using hill climbing and a genetic algorithm.

```c
// exact bias: 0.17353355999581582
uint32_t
lowbias32(uint32_t x)
{
x ^= x >> 16;
x *= 0x7feb352d;
x ^= x >> 15;
x *= 0x846ca68b;
x ^= x >> 16;
return x;
}

// inverse
uint32_t
lowbias32_r(uint32_t x)
{
x ^= x >> 16;
x *= 0x43021123;
x ^= x >> 15 ^ x >> 30;
x *= 0x1d69e2a5;
x ^= x >> 16;
return x;
}
```

More 2-round constants with low bias, some even better than `lowbias32`:

[15 d168aaad 15 af723597 15] = 0.15983776156606694
[17 9e485565 16 ef1d6b47 16] = 0.16143129787074881
[16 604baa5d 15 43d6ce97 15] = 0.16491052655811722
[16 a812d533 15 b278e4ad 17] = 0.16540778981744320
[16 9c8f2d35 15 5d1346b5 17] = 0.16835348823718840
[16 88c0a94b 14 9d06da59 17] = 0.16898511658356749
[16 a52fb2cd 15 551e4d49 16] = 0.17162579707098322
[16 b237694b 15 eb5b4593 15] = 0.17274184020173433
[16 7feb352d 15 846ca68b 16] = 0.17353355999581582
[16 4bdc9aa5 15 2729b469 16] = 0.17355424787865850
[16 dc63b4d3 15 2c32b9a9 15] = 0.17368589564800074
[16 e02bd533 15 0364c8ad 17] = 0.17447893149410759
[16 603a32a7 15 5a522677 15] = 0.17514135907753242
[16 ac10d4eb 15 9d51b169 16] = 0.17676510450127819
[15 f15f5959 14 7db29359 16] = 0.18103205436627479
[16 83747333 14 aa256573 16] = 0.18105722344231542
[16 be8b6ca7 14 6dd624b5 16] = 0.18223928664971270
[17 7186cd35 15 fe6bba73 15] = 0.18312741727971640
[16 93f2552b 15 959b4a4d 15] = 0.18360629205797341
[16 df892d4b 15 3c2da6b3 16] = 0.18368195486921446
[15 49c34cd3 13 e7418ca7 16] = 0.18400092964673831
[15 4811acab 15 5591acd7 16] = 0.18522661033580071
[16 dc85aaa7 15 6658a5cb 15] = 0.18577280285788791
[16 1ec9b4db 15 3224d38d 17] = 0.18631684392389897
[16 8ee0d535 15 5dc6b5af 15] = 0.18664478683752250
[16 462daaad 15 0a36c95d 16] = 0.18674876992866513
[16 17cdd657 15 a426cb25 15] = 0.18995262675473334
[16 ab39aacb 15 a1b5d19b 15] = 0.19045785238099658
[17 cd8512ad 15 b95c5a73 15] = 0.19050717016846502
[16 aecc96b5 15 f64dcd47 15] = 0.19077817816874504
[15 2548acd5 15 0b39d397 16] = 0.19121161052714156
[15 7f19c559 15 b356358d 16] = 0.19198007174447981
[16 4ffcab35 15 e98db28b 16] = 0.19423994132339928
[15 1216ccb5 15 3abcdca9 15] = 0.19426091938816648
[16 97219aad 15 ab46b735 15] = 0.19536391240344408
[16 c845a997 15 f214db9b 17] = 0.19553179377831409
[15 3a7ba96b 13 5e919299 16] = 0.19563436462680908
[16 c3d9a965 16 362e4b47 15] = 0.19575424692659107
[17 179cd515 15 4c495d47 15] = 0.19608530402798924
[16 5dce3553 15 a655d8e9 15] = 0.19621753012889542
[17 88a5ad35 16 96338b27 16] = 0.19653922266398804
[17 0364d657 15 ac2a34c5 15] = 0.19665754791333651
[16 3c9aa9ab 16 051369d7 16] = 0.19687211117412906
[17 0ee6d967 15 9c8a4a33 16] = 0.19722490309575344
[16 b921a6cb 14 30b5a6d1 16] = 0.19745192295417058
[18 a136aaad 16 9f6d62d7 17] = 0.19768193144773874
[16 0ae84d3b 15 3b9d4e5b 17] = 0.19776257374279985
[17 24f4d2cd 15 1ba3b969 16] = 0.19789489706453650
[16 418fb5b3 15 8cf3539b 16] = 0.19817117175199098
[16 f0ae2ad7 15 8965d939 16] = 0.19881758420284917
[17 9bde596b 16 1c9e9647 16] = 0.19882570872036193
[16 bd10754b 14 35a29b0d 16] = 0.19885203058591913
[17 78d31553 15 c547ac65 15] = 0.19918133404528665
[15 81aab34d 15 18e746a3 15] = 0.19938572052445763
[16 054335ab 15 146da68b 16] = 0.19943843016872725
[17 a1c76a55 16 5ca46b97 16] = 0.19959562213253398
[15 c62f4d53 14 62b8a46b 16] = 0.19973996656987172
[16 6872cd2d 15 f4a0d975 17] = 0.19992260539370590

This next function was discovered using only the prospector. It has a bit more
bias than the previous function.

```c
// exact bias: 0.34968228323361017
uint32_t
prospector32(uint32_t x)
{
x ^= x >> 15;
x *= 0x2c1b3c6d;
x ^= x >> 12;
x *= 0x297a2d39;
x ^= x >> 15;
return x;
}
```

To use the prospector search randomly for alternative multiplication constants,
run it like so:

$ ./prospector -p xorr:15,mul,xorr:12,mul,xorr:15

### Three round functions

Another round of multiply-xorshift in this construction allows functions
with carefully chosen parameters to reach the theoretical bias limit
(bias = ~0.021). For example, this hash function is indistinguishable
from a perfect PRF (e.g. a random permutation of all 32-bit integers):

```c
// exact bias: 0.020888578919738908
uint32_t
triple32(uint32_t x)
{
x ^= x >> 17;
x *= 0xed5ad4bb;
x ^= x >> 11;
x *= 0xac4c1b51;
x ^= x >> 15;
x *= 0x31848bab;
x ^= x >> 14;
return x;
}

// inverse
uint32_t
triple32_r(uint32_t x)
{
x ^= x >> 14 ^ x >> 28;
x *= 0x32b21703;
x ^= x >> 15 ^ x >> 30;
x *= 0x469e0db1;
x ^= x >> 11 ^ x >> 22;
x *= 0x79a85073;
x ^= x >> 17;
return x;
}
```

More 3-round constants with low bias:

[17 ed5ad4bb 11 ac4c1b51 15 31848bab 14] = 0.020888578919738908
[16 aeccedab 14 ac613e37 16 19c89935 17] = 0.021246568167078764
[16 236f7153 12 33cd8663 15 3e06b66b 16] = 0.021280991798512679
[18 4260bb47 13 27e8e1ed 15 9d48a33b 15] = 0.021576730651802156
[17 3f6cde45 12 51d608ef 16 6e93639d 17] = 0.021772288363808408
[15 5dfa224b 14 4bee7e4b 17 930ee371 15] = 0.02184521628884813
[17 3964f363 14 9ac3751d 16 4e8772cb 17] = 0.021883292578109576
[16 66046c65 14 d3f0865b 16 f9999193 16] = 0.0219446068365007
[16 b1a89b33 14 09136aaf 16 5f2a44a7 15] = 0.021998624107282542
[16 24767aad 12 daa18229 16 e9e53beb 16] = 0.022043911220395354
[15 42f91d8d 14 61355a85 15 dcf2a949 14] = 0.022052539152635078
[15 4df8395b 15 466b428b 16 b4b2868b 16] = 0.022140187420461286
[16 2bbed51b 14 cd09896b 16 38d4c587 15] = 0.022159936298777144
[16 0ab694cd 14 4c139e47 16 11a42c3b 16] = 0.02220928191220355
[17 7f1e072b 12 8750a507 16 ecbb5b5f 16] = 0.022283743052847804
[16 f1be7bad 14 73a54099 15 3b85b963 15] = 0.022316544125749647
[16 66e756d5 14 b5f5a9cd 16 84e56b11 16] = 0.022372957847491555
[15 233354bb 15 ce1247bd 16 855089bb 17] = 0.022406591070966285
[16 eb6805ab 15 d2c7b7a7 16 7645a32b 16] = 0.022427060650927547
[16 8288ab57 14 0d1bfe57 16 131631e5 16] = 0.022431656871313443
[16 45109e55 14 3b94759d 16 adf31ea5 17] = 0.022436433678417977
[15 26cd1933 14 e3da1d59 16 5a17445d 16] = 0.022460520416491526
[16 7001e6eb 14 bb8e7313 16 3aa8c523 15] = 0.022491767264054854
[16 49ed0a13 14 83588f29 15 658f258d 15] = 0.022500668856510898
[16 6cdb9705 14 4d58d2ed 14 c8642b37 16] = 0.022504626537729222
[16 a986846b 14 bdd5372d 15 ad44de6b 17] = 0.022528238323120016
[16 c9575725 15 9448f4c5 16 3b7a5443 16] = 0.022586511310042686
[15 fc54c453 13 08213789 15 669f96eb 16] = 0.022591114646032095
[16 d47ef17b 14 642fa58f 16 a8b65b9b 16] = 0.022600633971701509
[15 00bfaa73 14 8799c69b 16 731985b1 16] = 0.022645866629596379
[16 953a55e9 15 8523822b 17 56e7aa63 15] = 0.022667180032713324
[16 a3d7345b 15 7f41c9c7 16 308bd62d 17] = 0.022688845770122031
[16 195565c7 14 16064d6f 16 0f9ec575 15] = 0.022697810688752193
[16 13566dbb 14 59369a03 15 990f9d1b 16] = 0.022712430070797596
[16 8430cc4b 15 a7831cbd 15 c6ccbd33 15] = 0.022734765033419774
[16 699f272b 14 09c01023 16 39bd48c3 15] = 0.022854175321846512
[15 336536c3 13 4f0e38b1 16 15d229f7 16] = 0.022884125170795171
[16 221f686d 12 d8948a07 16 ed8a8345 16] = 0.022902500408830236
[16 d7ca8cbb 13 eb4e259f 15 34ab1143 16] = 0.022905955538176669
[16 7cb04f65 14 9b96da73 16 83625687 15] = 0.022906573700088178
[15 5156196b 14 940d8869 15 0086f473 17] = 0.022984943828687553

Prepending an increment to `triple32` breaks the `hash(0) = 0` issue while
also lowering the bias a tiny bit further:

```c
// exact bias: 0.020829410544597495
uint32_t
triple32inc(uint32_t x)
{
x++;
x ^= x >> 17;
x *= 0xed5ad4bb;
x ^= x >> 11;
x *= 0xac4c1b51;
x ^= x >> 15;
x *= 0x31848bab;
x ^= x >> 14;
return x;
}

// inverse
uint32_t
triple32inc_r(uint32_t x)
{
x ^= x >> 14 ^ x >> 28;
x *= 0x32b21703;
x ^= x >> 15 ^ x >> 30;
x *= 0x469e0db1;
x ^= x >> 11 ^ x >> 22;
x *= 0x79a85073;
x ^= x >> 17;
x--;
return x;
}
```

## Measuring exact bias

The `-E` mode evaluates the bias of a given hash function (`-p` or `-l`). By
default the prospector uses an estimate to quickly evaluate a function's bias,
but it's non-deterministic and there's a lot of noise in the result. To
exhaustively measure the exact bias, use the `-e` option.

The function to be checked can be defined using `-p` and a pattern or
`-l` and a shared library containing a function named `hash()`. For
example, to measure the exact bias of the best hash function above:

$ ./prospector -Eep xorr:16,mul:e2d0d4cb,xorr:15,mul:3c6ad939,xorr:15

Or drop the function in a C file named hash.c, and name the function
`hash()`. This lets you test hash functions that can't be represented
using the prospector's limited notion of hash functions.

$ cc -O3 -shared -fPIC -l hash.so hash.c
$ ./prospector -Eel ./hash.so

By default it treats its input as a 32-bit hash function. Use the `-8`
switch to test (by estimation) 64-bit functions. There is no exact,
exhaustive test for 64-bit hash functions since that would take far too
long.

## Reversible operation selection

```c
x = ~x;
x ^= constant;
x *= constant | 1; // e.g. only odd constants
x += constant;
x ^= x >> constant;
x ^= x << constant;
x += x << constant;
x -= x << constant;
x <<<= constant; // left rotation
x = bswap(x) // swap high and low bytes.
```

Technically `x = ~x` is covered by `x ^= constant`. However, `~x` is
uniquely special and particularly useful. The generator is very unlikely
to generate the one correct constant for the XOR operator that achieves
the same effect.

## 16-bit hashes

Because the constraints are different for 16-bit hashes there's a separate
tool for generating these hashes: `hp16`. Unlike the 32-bit / 64-bit
prospector, this implementation is fully portable and will run on just
about any system. It's also capable of generating and evaluating 128KiB
s-boxes.

Since 16-bit hashes are more likely to be needed on machines that, say,
lack fast multiplication instructions, certain operations can be omitted
during exploration (`-m`, `-r`).

Some interesting results so far:

```c
// 2-round xorshift-multiply (-Xn2)
// bias = 0.0085905051336723701
uint16_t hash16_xm2(uint16_t x)
{
x ^= x >> 8; x *= 0x88b5U;
x ^= x >> 7; x *= 0xdb2dU;
x ^= x >> 9;
return x;
}

// 3-round xorshift-multiply (-Xn3)
// bias = 0.0045976709018820602
uint16_t hash16_xm3(uint16_t x)
{
x ^= x >> 7; x *= 0x2993U;
x ^= x >> 5; x *= 0xe877U;
x ^= x >> 9; x *= 0x0235U;
x ^= x >> 10;
return x;
}

// No multiplication (-Imn6)
// bias = 0.023840118344741465
uint16_t hash16_s6(uint16_t x)
{
x += x << 7; x ^= x >> 8;
x += x << 3; x ^= x >> 2;
x += x << 4; x ^= x >> 8;
return x;
}

// Which is identical to this xorshift-multiply
uint16_t hash16_s6(uint16_t x)
{
x *= 0x0081U; x ^= x >> 8;
x *= 0x0009U; x ^= x >> 2;
x *= 0x0011U; x ^= x >> 8;
return x;
}
```

A good 3-round xorshift hash (a short search via `hp16 -Xn3`) is a close
approximation of a good s-box (i.e. `hp16 -S`).

Be mindful of C integer promotion rules when doing 16-bit operations. For
instance, on 32-bit implementations unsigned 16-bit operands will be
promoted to signed 32-bit integers, leading to incorrect results in
certain cases. The C programs printed by this program are careful to
promote 16-bit operations to "unsigned int" where needed.

[also]: https://marc-b-reynolds.github.io/math/2017/10/13/IntegerBijections.html
[article]: https://nullprogram.com/blog/2018/07/31/
[best]: https://github.com/skeeto/hash-prospector/issues/19
[jenkins]: http://burtleburtle.net/bob/hash/integer.html
[rev]: http://papa.bretmulvey.com/post/124027987928/hash-functions
[wang]: https://gist.github.com/badboy/6267743