Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/sky77764/pa-aug.pytorch
Part-Aware Data Augmentation for 3D Object Detection in Point Cloud (IROS 2021)
https://github.com/sky77764/pa-aug.pytorch
3d-object-detection data-augmentation lidar point-cloud
Last synced: 3 months ago
JSON representation
Part-Aware Data Augmentation for 3D Object Detection in Point Cloud (IROS 2021)
- Host: GitHub
- URL: https://github.com/sky77764/pa-aug.pytorch
- Owner: sky77764
- Created: 2020-09-01T06:45:35.000Z (about 4 years ago)
- Default Branch: master
- Last Pushed: 2022-10-23T05:38:25.000Z (about 2 years ago)
- Last Synced: 2023-11-28T08:42:00.858Z (12 months ago)
- Topics: 3d-object-detection, data-augmentation, lidar, point-cloud
- Language: Python
- Homepage:
- Size: 327 KB
- Stars: 69
- Watchers: 5
- Forks: 17
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- Awesome-Mixup - [Code
README
# Part-Aware Data Augmentation for 3D Object Detection in Point Cloud
This repository contains a reference implementation of our [Part-Aware Data Augmentation for 3D Object Detection in Point Cloud](https://ieeexplore.ieee.org/document/9635887) (IROS 2021).
If you find this code useful in your research, please consider citing our work:
```
@inproceedings{choi2021part,
title={Part-aware data augmentation for 3d object detection in point cloud},
author={Choi, Jaeseok and Song, Yeji and Kwak, Nojun},
booktitle={2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
pages={3391--3397},
year={2021},
organization={IEEE}
}
```
## Prerequisites
Our code was tested on [second.pytorch](https://github.com/traveller59/second.pytorch) and [OpenPCDet](https://github.com/open-mmlab/OpenPCDet).
This repository contains only part-aware data augmentation code.
Refer to the link above for code such as data loader or detector.## Usage
```
Args:
** only supports KITTI format **
points: lidar points (N, 4),
gt_boxes: ground truth boxes (B, 7),
gt_names: ground truth classes (B, 1),
class_names: list of classes to augment (3),
pa_aug_param: parameters for PA_AUG (string).Returns:
points: augmented lidar points (N', 4),
gt_boxes_mask: mask for gt_boxes (B)class_names = ['Car', 'Pedestrian', 'Cyclist']
pa_aug_param = "dropout_p02_swap_p02_mix_p02_sparse40_p01_noise10_p01"pa_aug = PartAwareAugmentation(points, gt_boxes, gt_names, class_names=class_names)
points, gt_boxes_mask = pa_aug.augment(pa_aug_param=pa_aug_param)
gt_boxes = gt_boxes[gt_boxes_mask]
```## Example
Follow [this repo](https://github.com/sky77764/PA-AUG-MD3D) if you want to check the implementation on OpenPCDet.