Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/smdlabtech/cy_ranaviz_ml_with_shiny
πDatamart Analysis with Machine Learning
https://github.com/smdlabtech/cy_ranaviz_ml_with_shiny
data-analysis data-science dataviz machine-learning ml r rstudio shiny
Last synced: 8 days ago
JSON representation
πDatamart Analysis with Machine Learning
- Host: GitHub
- URL: https://github.com/smdlabtech/cy_ranaviz_ml_with_shiny
- Owner: smdlabtech
- Created: 2022-04-07T21:16:18.000Z (almost 3 years ago)
- Default Branch: main
- Last Pushed: 2025-02-09T21:36:29.000Z (11 days ago)
- Last Synced: 2025-02-09T22:26:49.203Z (11 days ago)
- Topics: data-analysis, data-science, dataviz, machine-learning, ml, r, rstudio, shiny
- Language: R
- Homepage:
- Size: 9.77 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# π Datamart Analysis with Machine Learning (ML)
[](https://github.com/smdlabtech/cy_ranaviz_ml_with_shiny)
[](https://shiny.rstudio.com/)
[](https://scikit-learn.org/)
![]()
---
## π Links
- π **Application** : [Visual Analytics for ML](https://smd-lab-tech.shinyapps.io/Shiny_Dataviz/)
- π **Report** : [Case Study Report](./_docs/rprt_ana_donnee_avancees_22-1.pdf)---
## π Summary
Development of a predictive model for the **"display"** variable using Machine Learning techniques by transforming all continuous variables into categorical for modeling.### 1οΈβ£ Data Presentation
π **Descriptive analysis** of qualitative and quantitative variables, and their transformation for analysis.### 2οΈβ£ Multiple Component Analysis (MCA)
π Use of **MCA** to reduce data dimensionality, identify principal components, and interpret results.### 3οΈβ£ Modeling
- **Decision Tree**: Classification with specific parameters and a **confusion matrix** to assess performance.
- **Random Forest**: Application of **random forest**, parameter tuning, and classification results.
- **Logistic Regression**: Prediction using logistic regression, including **error rates** and accuracy metrics.### 4οΈβ£ Model Comparison
π Comparative analysis of three machine learning models: **Decision Tree, Random Forest, and Logistic Regression**.### 5οΈβ£ Model Performance (Best Model Analysis)
π Evaluation of model performance based on **precision** and **sensitivity**.---
π **Let's make data-driven decisions!**
---
> [@smdlabtech](https://github.com/smdlabtech)