Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/smirnovlad/data-science-notebooks
A collection of various data analysis approaches
https://github.com/smirnovlad/data-science-notebooks
data-science deep-learning kaggle machine-learning numpy pandas pytorch
Last synced: 15 days ago
JSON representation
A collection of various data analysis approaches
- Host: GitHub
- URL: https://github.com/smirnovlad/data-science-notebooks
- Owner: smirnovlad
- Created: 2023-11-17T07:31:43.000Z (12 months ago)
- Default Branch: main
- Last Pushed: 2024-06-01T11:22:38.000Z (6 months ago)
- Last Synced: 2024-10-09T04:22:50.053Z (about 1 month ago)
- Topics: data-science, deep-learning, kaggle, machine-learning, numpy, pandas, pytorch
- Language: Jupyter Notebook
- Homepage:
- Size: 11.9 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Data science notebooks
This repository comprises a compilation of my solutions and experiments in machine learning problems. Jupyter notebooks encompass research on open-source datasets and solutions to Kaggle competitions. Here, you can explore a diverse range of approaches and techniques for data analysis, along with the application of machine and deep learning methods.## Kaggle
- [Simpsons classification](https://www.kaggle.com/competitions/journey-springfield), [simpsons.ipynb](kaggle/simpsons.ipynb) (DLS assignment)## MIPT ML courses
### Generic
- [Wine dataset](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_wine.html), [wine.ipynb](mipt_ml_courses/generic/wine.ipynb)
- [Regression task with a raw dataset](https://www.kaggle.com/competitions/fall-ml2-mipt-2023/overview), [raw_dataset_regression.ipynb](mipt_ml_courses/generic/raw_dataset_regression.ipynb)### Computer vision
- [Breast cancer cells segmentation](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490494/), [cancer_cells_segmentation](mipt_ml_courses/cv/cancer_cells_segmentation.ipynb)
TODO: add classification metrics such as Precision, Recall, etc.
- [Panorama stitching](mipt_ml_courses/cv/panorama_stitching.ipynb)### Advanced
[Repository](https://github.com/andriygav/MachineLearningSeminars)- [Analysis of CNN on the EMNIST-letters dataset](mipt_ml_courses/advanced/cnn_emnist.ipynb)
- [Prediction of POS tags for tokens in the NERUS dataset using LSTM](mipt_ml_courses/advanced/lstm_nerus.ipynb)
- [Analysis of an autoencoder in the sentence reconstruction task for the Twitter dataset](mipt_ml_courses/advanced/autoencoder_twitter.ipynb)
- [Generation of image annotations for the COCO dataset](mipt_ml_courses/advanced/image_captioning_coco.ipynb)## Deep Learning School
- [PH2 Dataset images](https://www.fc.up.pt/addi/ph2%20database.html), [ph2_semantic_segmentation.ipynb](dls/ph2_semantic_segmentation.ipynb)