Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/smontazeriuh/infant-data-science-challenge

The classifier and a test Python script for the winning model in the data science challenge held by AI4NICU in conjunction with the Infant Center: “Classification of Abnormal EEG Background Activity in Newborn Infants,” which ran from June 1st to August 30th, 2022.
https://github.com/smontazeriuh/infant-data-science-challenge

cnn keras python

Last synced: 3 months ago
JSON representation

The classifier and a test Python script for the winning model in the data science challenge held by AI4NICU in conjunction with the Infant Center: “Classification of Abnormal EEG Background Activity in Newborn Infants,” which ran from June 1st to August 30th, 2022.

Awesome Lists containing this project

README

        

# INFANT-Data-Science-Challenge

This repository contains the following files:

1. **Classifiers:**
- `./classifiers/model1.h5`
- `./classifiers/model2.h5`
- `./classifiers/model3.h5`

These are the proposed CNN classifiers trained on the data-challenge dataset.

2. **Preprocessing Script:**
- `./01_preprocess.py`

A Python file containing scripts for preprocessing (filtering and resampling) of the signals.

3. **Testing Sample Preparation:**
- `./04_read_test_files.py`

A Python file with scripts for preparing testing samples.

4. **Classifier Testing:**
- `./05_testCNN.py`

A Python file with scripts for testing the CNN classifiers.

### Prerequisites

The following libraries and versions should be installed in the environment:

- Python -> 3.8.13
- Numpy -> 1.22.3
- TensorFlow -> 2.4.1
- Keras -> 2.3.1
- Matplotlib -> 3.5.1
- MNE -> 0.24.0
- Scikit-learn -> 1.0.2
- SciPy -> 1.7.3
- Pandas -> 1.4.3
- HDF5 -> 1.10.6

### Installation

You can install the required libraries using pip:

```bash
pip install numpy==1.22.3 tensorflow==2.4.1 keras==2.3.1 matplotlib==3.5.1 mne==0.24.0 scikit-learn==1.0.2 scipy==1.7.3 pandas==1.4.3 hdf5==1.10.6

```

### Usage

**Preprocess the data:**

```bash
python 01_preprocess.py
```

**Prepare testing samples:**

```bash
python 04_read_test_files.py
```

**Test the CNN classifiers:**

```bash
python 05_testCNN.py
```