Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/smrfeld/phys_dbd
Physics-based machine learning with dynamic Boltzmann distributions
https://github.com/smrfeld/phys_dbd
machine-learning physics physics-informed-learning physics-informed-ml physics-informed-neural-networks reaction-diffusion tensorflow
Last synced: 8 days ago
JSON representation
Physics-based machine learning with dynamic Boltzmann distributions
- Host: GitHub
- URL: https://github.com/smrfeld/phys_dbd
- Owner: smrfeld
- License: mit
- Created: 2021-06-13T20:52:41.000Z (over 3 years ago)
- Default Branch: main
- Last Pushed: 2022-01-11T05:44:27.000Z (almost 3 years ago)
- Last Synced: 2024-10-06T18:04:26.980Z (about 1 month ago)
- Topics: machine-learning, physics, physics-informed-learning, physics-informed-ml, physics-informed-neural-networks, reaction-diffusion, tensorflow
- Language: Jupyter Notebook
- Homepage: https://smrfeld.github.io/phys_dbd
- Size: 19.3 MB
- Stars: 2
- Watchers: 3
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Physics-based dynamic PCA for modeling stochastic reaction networks with TensorFlow
[![docs](https://github.com/smrfeld/phys_dbd/actions/workflows/docs.yml/badge.svg)](https://github.com/smrfeld/phys_dbd/actions/workflows/docs.yml)
This is the source repo. for the `physDBD` Python package. It allows the creation of physics-based machine learning models in `TensorFlow` for modeling stochastic reaction networks.
## Quickstart
1. Install:
```
pip install physDBD
```
2. See the [example notebook](example/main.ipynb).3. Read the [documentation](https://smrfeld.github.io/phys_dbd).
## About
This repo. implements a TensorFlow package for modeling stochastic reaction networks with a dynamic PCA model. [Please see this paper for technical details](https://arxiv.org/abs/2109.05053):
```
O. K. Ernst, T. Bartol, T. Sejnowski and E. Mjolsness. Physics-based machine learning for modeling stochastic IP3-dependent calcium dynamics. arXiv:2109.05053
```
The original implementation in the paper is written in Mathematica and can be found [here](https://github.com/smrfeld/physics-based-ml-reaction-networks). The Python package developed here translates these methods to `TensorFlow`.The only current supported probability distribution is the Gaussian distribution defined by PCA; more general Gaussian distributions are a work in progress.
## Requirements
* `TensorFlow 2.5.0` or later. *Note: later versions not tested.*
* `Python 3.7.4` or later.## Installation
Use `pip`:
```
pip install physDBD
```
Alternatively, clone this repo. and use the provided `setup.py`:
```
python setup.py install
```## Documentation
See the dedicated [documentation page](https://smrfeld.github.io/phys_dbd).
## Example
See the notebook in the [example notebook](example/main.ipynb).
## Tests
Tests are run using `pytest` and are located in [tests](tests/).
## Citing
[Please cite this paper:](https://arxiv.org/abs/2109.05053):
```
O. K. Ernst, T. Bartol, T. Sejnowski and E. Mjolsness. Physics-based machine learning for modeling stochastic IP3-dependent calcium dynamics. arXiv:2109.05053
```