Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/snikumbh/archr

archR: Identifying promoter sequence architectures de novo using NMF
https://github.com/snikumbh/archr

archr discovery nmf non-negative-matrix-factorization promoter-sequence-architectures r r-package scikit-learn sequence-architectures unsupervised-machine-learning

Last synced: 6 days ago
JSON representation

archR: Identifying promoter sequence architectures de novo using NMF

Awesome Lists containing this project

README

        

# archR

[![Lifecycle:
experimental](https://img.shields.io/badge/lifecycle-experimental-orange.svg)](https://www.tidyverse.org/lifecycle/#experimental)
[![DOI](https://zenodo.org/badge/188449833.svg)](https://zenodo.org/badge/latestdoi/188449833)
[![Build status](https://travis-ci.org/snikumbh/archR.svg?branch=master)](https://travis-ci.org/snikumbh/archR)
[![Codecov test coverage](https://codecov.io/gh/snikumbh/archR/branch/master/graph/badge.svg)](https://codecov.io/gh/snikumbh/archR?branch=master)
[![R build status](https://github.com/snikumbh/archR/workflows/R-CMD-check/badge.svg)](https://github.com/snikumbh/archR/actions)

Note: _This package is currently under development. So, please bear with me while I put the final blocks together. Thanks for your understanding!_

archR is an unsupervised, non-negative matrix factorization (NMF)-based algorithm for discovery of sequence architectures de novo.
Below is a schematic of archR's algorithm.

## Installation

### Python scikit-learn dependency
This package requires the Python module scikit-learn. Please see installation instructions [here](https://scikit-learn.org/stable/install.html).

### To install this package, use

```r
if (!requireNamespace("remotes", quietly = TRUE)) {
install.packages("remotes")
}

remotes::install_github("snikumbh/archR", build_vignettes = FALSE)
```

### Usage
```r
# load package
library(archR)
library(Biostrings)

# Creation of one-hot encoded data matrix from FASTA file
# You can use your own FASTA file instead
inputFastaFilename <- system.file("extdata", "example_data.fa",
package = "archR",
mustWork = TRUE)

# Specifying dinuc generates dinucleotide features
inputSeqsMat <- archR::prepare_data_from_FASTA(inputFastaFilename,
sinuc_or_dinuc = "dinuc")

inputSeqsRaw <- archR::prepare_data_from_FASTA(inputFastaFilename,
raw_seq = TRUE)

nSeqs <- length(inputSeqsRaw)
positions <- seq(1, Biostrings::width(inputSeqsRaw[1]))

# Set archR configuration
# Most arguments have default values
archRconfig <- archR::archR_set_config(
parallelize = TRUE,
n_cores = 2,
n_runs = 100,
k_min = 1,
k_max = 20,
mod_sel_type = "stability",
bound = 10^-6,
chunk_size = 100,
result_aggl = "ward.D",
result_dist = "euclid",
flags = list(debug = FALSE, time = TRUE, verbose = TRUE,
plot = FALSE)
)

#
### Call/Run archR
archRresult <- archR::archR(config = archRconfig,
seqs_ohe_mat = inputSeqsMat,
seqs_raw = inputSeqsRaw,
seqs_pos = positions,
total_itr = 2,
set_ocollation = c(TRUE, FALSE))

```

# Contact
Comments, suggestions, enquiries/requests are welcome! Feel free to email [email protected] or [create an new issue](https://github.com/snikumbh/archR/issues/new)