Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/soheil-mp/llama2
Fine-tuning the Llama2 model
https://github.com/soheil-mp/llama2
fine-tuning llama2 llm
Last synced: about 1 month ago
JSON representation
Fine-tuning the Llama2 model
- Host: GitHub
- URL: https://github.com/soheil-mp/llama2
- Owner: soheil-mp
- License: mit
- Created: 2024-02-13T11:11:49.000Z (11 months ago)
- Default Branch: master
- Last Pushed: 2024-02-26T08:26:37.000Z (11 months ago)
- Last Synced: 2024-12-09T09:58:01.033Z (about 1 month ago)
- Topics: fine-tuning, llama2, llm
- Language: Jupyter Notebook
- Homepage:
- Size: 32.2 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Llama2 Fine-Tuning
Welcome to LlamaTune, a dedicated repository for fine-tuning Llama2 model for advanced AI tasks. Our goal is to enhance the capabilities of pre-trained Llama models, tailoring them to specific datasets and use cases.
## Features
- Preprocessing scripts for preparing your data.
- Fine-tuning pipelines for Llama models.
- Evaluation scripts for assessing model performance.
- Comprehensive documentation for easy replication and customization.
## Getting Started
### Prerequisites
Ensure you have Python 3.9+ installed on your system.
### Installation
Clone the repository:
```bash
git clone https://github.com/soheilmohammadpour/LlamaTune.git
cd LlamaTune
```Install dependencies:
```bash
pip install -r requirements.txt
```
## Usage
Refer to our fine-tuning guide and usage examples for detailed instructions on how to use this repository.
## Contributing
Contributions are what make the open-source community such an amazing place to learn, inspire, and create. Any contributions you make are greatly appreciated.
## License
Distributed under the MIT License. See LICENSE for more information.
## File Structure
The file structure for this repo is as follows.
```
LlamaTune/
│
├── config/ # Configuration files
│ ├── model_config.py # Model configurations
│ └── training_config.py # Training configurations
│
├── data/ # Data handling
│ ├── raw/ # Raw datasets
│ ├── processed/ # Processed datasets
│ ├── preprocess.py # Script for preprocessing data
│ └── load_data.py # Script for loading datasets
│
├── models/ # Model-related files
│ ├── model_utils.py # Model loading and saving utilities
│ ├── evaluate.py # Evaluation script
│ └── train.py # Training script
│
├── tokenizers/ # Tokenizer-related files
│ └── tokenizer_utils.py # Tokenizer utilities
│
├── utils/ # Utility functions
│ └── general_utils.py # General utilities
│
├── notebooks/ # Jupyter notebooks for demos and tutorials
│ └── fine_tuning_examples.ipynb # Example notebook
│
├── tests/ # Test scripts
│ ├── test_preprocess.py # Tests for data preprocessing
│ ├── test_model.py # Tests for model functionality
│ ├── test_tokenizer.py # Tests for tokenizer functionality
│ └── test_utils.py # Tests for utility functions
│
├── generation/ # Scripts for response generation
│ └── generate.py # Response generation script
│
├── README.md # Project README
├── setup.py
└── requirements.txt # Project dependencies```