Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/solegalli/machine-learning-imbalanced-data
Code repository for the online course Machine Learning with Imbalanced Data
https://github.com/solegalli/machine-learning-imbalanced-data
data-science imbalanced-classification imbalanced-data imbalanced-learning machine-learning python
Last synced: 2 days ago
JSON representation
Code repository for the online course Machine Learning with Imbalanced Data
- Host: GitHub
- URL: https://github.com/solegalli/machine-learning-imbalanced-data
- Owner: solegalli
- License: other
- Created: 2020-10-13T09:03:28.000Z (about 4 years ago)
- Default Branch: master
- Last Pushed: 2024-11-29T19:52:41.000Z (about 1 month ago)
- Last Synced: 2024-12-22T23:04:02.416Z (9 days ago)
- Topics: data-science, imbalanced-classification, imbalanced-data, imbalanced-learning, machine-learning, python
- Language: Jupyter Notebook
- Homepage: https://www.courses.trainindata.com/p/machine-learning-with-imbalanced-data
- Size: 22 MB
- Stars: 164
- Watchers: 6
- Forks: 214
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- Funding: .github/FUNDING.yml
- License: LICENSE
Awesome Lists containing this project
README
![PythonVersion](https://img.shields.io/badge/python-3.8%20|3.9%20|%203.10%20|%203.11-success)
[![License https://github.com/solegalli/machine-learning-imbalanced-data/blob/master/LICENSE](https://img.shields.io/badge/license-BSD-success.svg)](https://github.com/solegalli/machine-learning-imbalanced-data/blob/master/LICENSE)
[![Sponsorship https://www.trainindata.com/](https://img.shields.io/badge/Powered%20By-TrainInData-orange.svg)](https://www.trainindata.com/)## Machine Learning with Imbalanced Data - Code Repository
[](https://www.trainindata.com/p/machine-learning-with-imbalanced-data)
**Launched**: November, 2020
**Updated**: August, 2024
Actively maintained.
[](https://www.trainindata.com/p/machine-learning-with-imbalanced-data)
## Links
- [Online Course](https://www.trainindata.com/p/machine-learning-with-imbalanced-data)
## Table of Contents
1. **Metrics**
1. Limitations of the Accuracy
2. Precision, Recall, F-Measure
3. Confusion Matrix
4. False Positive Rate and False Negative Rate
5. Geometric Mean
6. Dominance
7. Index of imbalanced accuracy
8. ROC-AUC
9. Precision-Recall Curves
10. Probability Distribution and Calibration
11. Which metric to optimise2. **Udersampling Methods**
1. Random Undersampling
2. Condensed Nearest Neighbour
3. Tomek Links
4. One Sided Selection
5. Edited Nearest Neighbours
6. Repeated Edited Nearest Neighbours
7. All KNN
8. Neighbourhood Cleaning Rule
9. NearMiss
10. Instance Hardness Threshold3. **Oversampling methods**
1. Random Oversampling
2. ADASYN
3. SMOTE
4. BorderlineSMOTE
5. KMeansSMOTE
6. SMOTENC
7. SVMSMOTE4. **Over and Undersampling Methods**
1. SMOTENN
2. SMOTETomek5. **Ensemble Methods**
1. Coming Soon6. **Cost Sensitive Learning**
1. Types of cost
2. Obtaining the Cost
3. Missclassification Cost
4. Bayes Risk
5. MetaCost7. **Probability Calibration**
1. Probability Calibration Curves
2. Brier Score
3. Effect of under and over sampling on Probability Calibration
4. Cost Sensitive Learning and Probability Calibration
4. Calibrating a Classifier## Links
- [Online Course](https://www.trainindata.com/p/machine-learning-with-imbalanced-data)