An open API service indexing awesome lists of open source software.

https://github.com/solegalli/machine-learning-interpretability

Code repository for the online course Machine Learning Interpretability
https://github.com/solegalli/machine-learning-interpretability

explainable-ai explainable-machine-learning interpretable-machine-learning machine-learning machine-learning-algorithms

Last synced: 10 months ago
JSON representation

Code repository for the online course Machine Learning Interpretability

Awesome Lists containing this project

README

          

![PythonVersion](https://img.shields.io/badge/python-3.7%20|3.8%20|%203.9%20|%203.10-success)
[![License https://github.com/solegalli/machine-learning-interpretability/blob/master/LICENSE](https://img.shields.io/badge/license-BSD-success.svg)](https://github.com/solegalli/machine-learning-interpretability/blob/master/LICENSE)
[![Sponsorship https://www.trainindata.com/](https://img.shields.io/badge/Powered%20By-TrainInData-orange.svg)](https://www.trainindata.com/)

## Machine Learning Interpretability- Code Repository

Code repository for the online course [Machine Learning Interpretability](https://www.trainindata.com/p/machine-learning-interpretability)

**Course launch: 30th November, 2023**

Actively maintained.

[](https://www.trainindata.com/p/machine-learning-interpretability)

## Table of Contents

1. **Machine Learning Interpretability**
1. Interpretability in the context of Machine Learning
2. Local vs Global Interpretability
3. Intrinsically explainable models
4. Post-hoc explainability methods
5. Challenges to interpretability
6. How to make models more explainable

2. **Intrinsically Explainable Models**
1. Linear and Logistic Regression
2. Decision trees
3. Random forests
4. Gradient boosting machines
5. Global and local interpretation

3. **Post-hoc methods - Global explainability**
1. Permutation Feature Importance
2. Partial dependency plots
3. Accumulated local effects

4. **Post-hoc methods - Local explainability**
1. LIME
2. SHAP
3. Individual contitional expectation

5. **Featuring the following Python interpretability libraries**
1. Scikit-learn
2. treeinterpreter
3. Eli5
4. Dalex
5. Alibi
6. pdpbox
7. Lime
8. Shap

## Links

- [Online Course](https://www.trainindata.com/p/machine-learning-interpretability)