Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/solidglue/deep_learning_tensorflow2_examples
深度学习TensorFlow2入门指南。Deep Learning TensorFlow2 API and Examples with Python3 and Jupyter Notebook.
https://github.com/solidglue/deep_learning_tensorflow2_examples
jupyter-notebook keras tensorflow-api tensorflow-examples tensorflow2
Last synced: about 1 month ago
JSON representation
深度学习TensorFlow2入门指南。Deep Learning TensorFlow2 API and Examples with Python3 and Jupyter Notebook.
- Host: GitHub
- URL: https://github.com/solidglue/deep_learning_tensorflow2_examples
- Owner: solidglue
- License: apache-2.0
- Created: 2024-02-27T05:57:44.000Z (10 months ago)
- Default Branch: master
- Last Pushed: 2024-05-20T09:16:43.000Z (7 months ago)
- Last Synced: 2024-10-10T08:43:47.745Z (2 months ago)
- Topics: jupyter-notebook, keras, tensorflow-api, tensorflow-examples, tensorflow2
- Language: Jupyter Notebook
- Homepage:
- Size: 3.15 MB
- Stars: 98
- Watchers: 1
- Forks: 2
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# 深度学习入门指南
基于TensorFlow2 + Keras讲解深度学习入门指南。## 注意
如果通过Github站内超链接打开Jupyter Notebook文件发生错误,可以点击根据 https://nbviewer.org 生成的“备用链接”间接访问对应文件。
或者通过以下链接访问整个项目的站外备用链接,注意点击站外备用链接里的非Jupyter Notebook格式文件会跳转回到Github仓库内:
● [**Deep_Learning_TensorFlow2_Examples**](https://nbviewer.org/github/solidglue/Deep_Learning_TensorFlow2_Examples/tree/master/)## 张量
● [**张量**](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/01_TensorFlow_basics/01_01_Tensors.ipynb) [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Deep_Learning_TensorFlow2_Examples/blob/master/01_TensorFlow_basics/01_01_Tensors.ipynb)]
● [**变量**](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/01_TensorFlow_basics/01_02_Variables.ipynb) [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Deep_Learning_TensorFlow2_Examples/blob/master/01_TensorFlow_basics/01_02_Variables.ipynb)]
● [**自动微分**](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/01_TensorFlow_basics/01_03_Automatic_differentiation.ipynb) [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Deep_Learning_TensorFlow2_Examples/blob/master/01_TensorFlow_basics/01_03_Automatic_differentiation.ipynb)]
● 图和函数简介
● [**模块、层和模型简介**](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/01_TensorFlow_basics/01_05_Modules_layers_and_models.ipynb) [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Deep_Learning_TensorFlow2_Examples/blob/master/01_TensorFlow_basics/01_05_Modules_layers_and_models.ipynb)]
● [**训练循环**](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/01_TensorFlow_basics/01_06_Training_loops.ipynb) [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Deep_Learning_TensorFlow2_Examples/blob/master/01_TensorFlow_basics/01_06_Training_loops.ipynb)]
● 高级自动微分
● 不规则张量
● [**稀疏张量**](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/04_TensorFlow_in_depth/04_04_Sparse_tensor.ipynb) [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Deep_Learning_TensorFlow2_Examples/blob/master/04_TensorFlow_in_depth/04_04_Sparse_tensor.ipynb)]
● Numpy API
● Tensor切片## Keras
● [**Sequential模型**](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/02_Keras/02_01_The_sequential_model.ipynb) [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Deep_Learning_TensorFlow2_Examples/blob/master/02_Keras/02_01_The_sequential_model.ipynb)]
● [**Functional API**](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/02_Keras/02_02_The_functional_API.ipynb) [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Deep_Learning_TensorFlow2_Examples/blob/master/02_Keras/02_02_The_functional_API.ipynb)]
● [**使用内置方法进行训练和评估**](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/02_Keras/02_03_Training_evaluation_with_the_built_in_methods.ipynb) [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Deep_Learning_TensorFlow2_Examples/blob/master/02_Keras/02_03_Training_evaluation_with_the_built_in_methods.ipynb)]
● 通过子类化构建新层和模型
● [**保存并加载Keras模型**](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/02_Keras/02_05_Serialization_and_saving.ipynb) [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Deep_Learning_TensorFlow2_Examples/blob/master/02_Keras/02_05_Serialization_and_saving.ipynb)]
● [**使用预处理层**](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/02_Keras/02_07_Working_with_preprocessing_layers.ipynb) [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Deep_Learning_TensorFlow2_Examples/blob/master/02_Keras/02_07_Working_with_preprocessing_layers.ipynb)]
● [**自定义Model.fit的操作流程**](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/02_Keras/02_08_Customizing_what_happens_in_fit.ipynb) [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Deep_Learning_TensorFlow2_Examples/blob/master/02_Keras/02_08_Customizing_what_happens_in_fit.ipynb)]
● [**从头开始编写训练循环**](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/02_Keras/02_09_Writing_a_training_loop_from_scratch.ipynb) [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Deep_Learning_TensorFlow2_Examples/blob/master/02_Keras/02_09_Writing_a_training_loop_from_scratch.ipynb)]
● 采用Keras的循环神经网络(RNN)
● [**采用Keras进行遮盖和填充**](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/02_Keras/02_11_Understading_masking_and_padding.ipynb) [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Deep_Learning_TensorFlow2_Examples/blob/master/02_Keras/02_11_Understading_masking_and_padding.ipynb)]
● 自动编写回调
● 迁移学习和微调
● 使用TensorFlow Cloud训练Keras模型## TensorFlow Core
● [**TensorFlow Core API 快速入门**](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/03_Build_with_Core/03_01_Quickstart_for_core.ipynb) [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Deep_Learning_TensorFlow2_Examples/blob/master/03_Build_with_Core/03_01_Quickstart_for_core.ipynb)]
● [**使用 Core API 进行二元分类的逻辑回归**](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/03_Build_with_Core/03_02_Logistic_regression.ipynb) [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Deep_Learning_TensorFlow2_Examples/blob/master/03_Build_with_Core/03_02_Logistic_regression.ipynb)]## 自定义
● 创建操作
● 生成随机数字## 数据输入流水线
● [**tf.data**](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/06_Data_input_pipelines/06_01_tfdata.ipynb) [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Deep_Learning_TensorFlow2_Examples/blob/master/06_Data_input_pipelines/06_01_tfdata.ipynb)]
● 优化流水线性能
● 分析流水线性能## 保存模型
● [**Checkpoint**](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/07_Import_and_export/07_01_Checkpoint.ipynb) [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Deep_Learning_TensorFlow2_Examples/blob/master/07_Import_and_export/07_01_Checkpoint.ipynb)]
● [**SavedModel**](https://github.com/solidglue/Deep_Learning_TensorFlow2_Examples/blob/master/07_Import_and_export/07_02_SaveModel.ipynb) [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Deep_Learning_TensorFlow2_Examples/blob/master/07_Import_and_export/07_02_SaveModel.ipynb)]## 加速器
● 分布式训练
● GPU
● TPU## 性能
● 使用tf.function提升性能
● 分析TensorFlow的性能
● 优化GPU性能
● 图优化
● 混合精度## TensorFlow Serving(服务)
● TensorFlow Serving和Docker
● 安装
● 提供TensorFlow模型
● 高级模型服务器配置## *扩展
1.**推荐系统**
王树森推荐系统公开课 - 基于小红书的场景讲解工业界真实的推荐系统。
● [**Recommender_System**](https://github.com/solidglue/Recommender_System)2.**YouTuBe推荐系统排序模型**
以"DNN_for_YouTube_Recommendations"模型和电影评分数据集(ml-1m)为基础,详尽的展示了如何基于TensorFlow2实现推荐系统排序模型。
● [**YouTube深度排序模型(多值embedding、多目标学习)**](https://github.com/solidglue/DNN_for_YouTube_Recommendations)3.**推荐系统推理服务**
基于Goalng、Docker和微服务思想实现了高并发、高性能和高可用的推荐系统推理微服务,包括多种召回/排序服务,并提供多种接口访问方式(REST、gRPC和Dubbo)等,每日可处理上千万次推理请求。
● [**推荐系统推理微服务Golang**](https://github.com/solidglue/Recommender_System_Inference_Services)4.**机器学习 Sklearn入门教程**
● [**机器学习Sklearn入门教程**](https://github.com/solidglue/Machine_Learning_Sklearn_Examples)