Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/solidglue/machine_learning_sklearn_examples

机器学习Sklearn入门指南。Machine Learning Sklearn API and Examples with Python3 and Jupyter Notebook.
https://github.com/solidglue/machine_learning_sklearn_examples

machine-learning sklearn

Last synced: 27 days ago
JSON representation

机器学习Sklearn入门指南。Machine Learning Sklearn API and Examples with Python3 and Jupyter Notebook.

Awesome Lists containing this project

README

        

# 机器学习Sklearn入门指南
机器学习入门指南,基于SKlearn讲解如何学习《机器学习》,更新中。

## 注意
如果通过Github站内超链接打开Jupyter Notebook文件发生错误,可以点击根据 https://nbviewer.org 生成的“备用链接”间接访问对应文件。
或者通过以下链接访问整个项目的站外备用链接,注意点击站外备用链接里的非Jupyter Notebook格式文件会跳转回到Github仓库内:
● [**Machine_Learning_Sklearn_Examples**](https://nbviewer.org/github/solidglue/Machine_Learning_Sklearn_Examples/tree/master/)

## 机器学习Python基础
● [**Numpy科学计算**](https://github.com/solidglue/Machine_Learning_Sklearn_Examples/blob/master/00_Python_basics/00_01_Numpy_basic.ipynb)     [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Machine_Learning_Sklearn_Examples/blob/master/00_Python_basics/00_01_Numpy_basic.ipynb)]
● [**Pandas数据分析**](https://github.com/solidglue/Machine_Learning_Sklearn_Examples/blob/master/00_Python_basics/00_02_Pandas_basic.ipynb)     [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Machine_Learning_Sklearn_Examples/blob/master/00_Python_basics/00_02_Pandas_basic.ipynb)]
● [**Matplotlib可视化**](https://github.com/solidglue/Machine_Learning_Sklearn_Examples/blob/master/00_Python_basics/00_03_Matplotlib_basic.ipynb)     [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Machine_Learning_Sklearn_Examples/blob/master/00_Python_basics/00_03_Matplotlib_basic.ipynb)]
● [**数据探索EDA**](https://github.com/solidglue/Machine_Learning_Sklearn_Examples/blob/master/00_Python_basics/00_04_EDA.ipynb)     [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Machine_Learning_Sklearn_Examples/blob/master/00_Python_basics/00_04_EDA.ipynb)]

## 监督学习
● [**线性回归**](https://github.com/solidglue/Machine_Learning_Sklearn_Jupyter_Demo/blob/master/01_Supervised_learning/01_01_Linear_regression.ipynb)     [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Machine_Learning_Sklearn_Examples/blob/master/01_Supervised_learning/01_01_Linear_regression.ipynb)]
● [**逻辑回归**](https://github.com/solidglue/Machine_Learning_Sklearn_Jupyter_Demo/blob/master/01_Supervised_learning/01_02_Logistic_regression.ipynb)     [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Machine_Learning_Sklearn_Examples/blob/master/01_Supervised_learning/01_02_Logistic_regression.ipynb)]
● [**支持向量机SVM**](https://github.com/solidglue/Machine_Learning_Sklearn_Jupyter_Demo/blob/master/01_Supervised_learning/01_03_Svm.ipynb)     [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Machine_Learning_Sklearn_Examples/blob/master/01_Supervised_learning/01_03_Svm.ipynb)]
● 随机梯度下降SGD
● [**K近邻(KNN)**](https://github.com/solidglue/Machine_Learning_Sklearn_Jupyter_Demo/blob/master/01_Supervised_learning/01_05_Knn.ipynb)     [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Machine_Learning_Sklearn_Examples/blob/master/01_Supervised_learning/01_05_Knn.ipynb)]
● 朴素贝叶斯
● [**决策树**](https://github.com/solidglue/Machine_Learning_Sklearn_Jupyter_Demo/blob/master/01_Supervised_learning/01_07_Decision_trees.ipynb)     [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Machine_Learning_Sklearn_Examples/blob/master/01_Supervised_learning/01_07_Decision_trees.ipynb)]
● [**随机森林**](https://github.com/solidglue/Machine_Learning_Sklearn_Jupyter_Demo/blob/master/01_Supervised_learning/01_08_Random_forests.ipynb)     [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Machine_Learning_Sklearn_Examples/blob/master/01_Supervised_learning/01_08_Random_forests.ipynb)]
● 多分类与多输出
● 特征选择
● 神经网络

## 无监督学习
● [**Kmeans聚类**](https://github.com/solidglue/Machine_Learning_Sklearn_Jupyter_Demo/blob/master/02_Unsupervised_learning/02_01_Kmeans_clustering.ipynb)     [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Machine_Learning_Sklearn_Examples/blob/master/02_Unsupervised_learning/02_01_Kmeans_clustering.ipynb)]
● 神经网络模型(无监督)

## 模型选择与评估
● [**交叉验证**](https://github.com/solidglue/Machine_Learning_Sklearn_Examples/blob/master/03_Model_selection_and_evaluation/03_01_Cross_validation.ipynb)     [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Machine_Learning_Sklearn_Examples/blob/master/03_Model_selection_and_evaluation/03_01_Cross_validation.ipynb)]
● [**调整估算器超参数**](https://github.com/solidglue/Machine_Learning_Sklearn_Examples/blob/master/03_Model_selection_and_evaluation/03_02_hyper_parameters_estimator.ipynb)     [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Machine_Learning_Sklearn_Examples/blob/master/03_Model_selection_and_evaluation/03_02_hyper_parameters_estimator.ipynb)]
● [**指标和评分**](https://github.com/solidglue/Machine_Learning_Sklearn_Examples/blob/master/03_Model_selection_and_evaluation/03_03_Metrics_and_scoring.ipynb)     [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Machine_Learning_Sklearn_Examples/blob/master/03_Model_selection_and_evaluation/03_03_Metrics_and_scoring.ipynb)]
● [**验证曲线:绘制分数以评估模型**](https://github.com/solidglue/Machine_Learning_Sklearn_Examples/blob/master/03_Model_selection_and_evaluation/03_04_Validation_curves.ipynb)     [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Machine_Learning_Sklearn_Examples/blob/master/03_Model_selection_and_evaluation/03_04_Validation_curves.ipynb)]

## 可视化
● 可视化

## 数据集转换
● [**流水线和复合估算器**](https://github.com/solidglue/Machine_Learning_Sklearn_Examples/blob/master/05_Dataset_transformations/05_01_Pipelines_and_composite_estimators.ipynb)     [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Machine_Learning_Sklearn_Examples/blob/master/05_Dataset_transformations/05_01_Pipelines_and_composite_estimators.ipynb)]
● [**特征提取**](https://github.com/solidglue/Machine_Learning_Sklearn_Examples/blob/master/05_Dataset_transformations/05_02_Feature_extraction.ipynb)     [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Machine_Learning_Sklearn_Examples/blob/master/05_Dataset_transformations/05_02_Feature_extraction.ipynb)]
● [**数据预处理**](https://github.com/solidglue/Machine_Learning_Sklearn_Examples/blob/master/05_Dataset_transformations/05_03_Preprocessing_data.ipynb)     [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Machine_Learning_Sklearn_Examples/blob/master/05_Dataset_transformations/05_03_Preprocessing_data.ipynb)]
● [**缺失值补充**](https://github.com/solidglue/Machine_Learning_Sklearn_Examples/blob/master/05_Dataset_transformations/05_04_Imputation_of_missing_values.ipynb)     [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Machine_Learning_Sklearn_Examples/blob/master/05_Dataset_transformations/05_04_Imputation_of_missing_values.ipynb)]
● 无监督降维
● 随机投影

## 数据集加载
● [**玩具数据集**](https://github.com/solidglue/Machine_Learning_Sklearn_Examples/blob/master/06_Dataset_loading/06_01_Toy_datasets.ipynb)     [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Machine_Learning_Sklearn_Examples/blob/master/06_Dataset_loading/06_01_Toy_datasets.ipynb)]
● [**真实世界数据集**](https://github.com/solidglue/Machine_Learning_Sklearn_Examples/blob/master/06_Dataset_loading/06_02_Real_world_datasets.ipynb)     [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Machine_Learning_Sklearn_Examples/blob/master/06_Dataset_loading/06_02_Real_world_datasets.ipynb)]
● [**生成的数据集**](https://github.com/solidglue/Machine_Learning_Sklearn_Examples/blob/master/06_Dataset_loading/06_03_Generated%20datasets.ipynb)     [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Machine_Learning_Sklearn_Examples/blob/master/06_Dataset_loading/06_03_Generated%20datasets.ipynb)]
● [**加载其他数据集**](https://github.com/solidglue/Machine_Learning_Sklearn_Examples/blob/master/06_Dataset_loading/06_04_load_files.ipynb)     [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Machine_Learning_Sklearn_Examples/blob/master/06_Dataset_loading/06_04_load_files.ipynb)]

## 模型持久化
● 模型持久化

## *扩展

1.**推荐系统**
王树森推荐系统公开课 - 基于小红书的场景讲解工业界真实的推荐系统。
● [**Recommender_System**](https://github.com/solidglue/Recommender_System)

2.**YouTuBe推荐系统排序模型**
以"DNN_for_YouTube_Recommendations"模型和电影评分数据集(ml-1m)为基础,详尽的展示了如何基于TensorFlow2实现推荐系统排序模型。
● [**YouTube深度排序模型(多值embedding、多目标学习)**](https://github.com/solidglue/DNN_for_YouTube_Recommendations)

3.**推荐系统推理服务**
基于Goalng、Docker和微服务思想实现了高并发、高性能和高可用的推荐系统推理微服务,包括多种召回/排序服务,并提供多种接口访问方式(REST、gRPC和Dubbo)等,每日可处理上千万次推理请求。
● [**推荐系统推理微服务Golang**](https://github.com/solidglue/Recommender_System_Inference_Services)

4.**深度学习TensorFlow入门教程**
● [**深度学习TensorFlow入门教程**](https://github.com/solidglue/Deep_Learning_TensorFlow2_Examples)