Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/soluto/python-flask-sklearn-docker-template
A simple example of python api for real time machine learning, using scikit-learn, Flask and Docker
https://github.com/soluto/python-flask-sklearn-docker-template
docker flask python scikit-learn sklearn soluto-open-source
Last synced: 13 days ago
JSON representation
A simple example of python api for real time machine learning, using scikit-learn, Flask and Docker
- Host: GitHub
- URL: https://github.com/soluto/python-flask-sklearn-docker-template
- Owner: Soluto
- Archived: true
- Created: 2017-07-14T13:00:56.000Z (over 7 years ago)
- Default Branch: master
- Last Pushed: 2023-08-28T16:27:25.000Z (over 1 year ago)
- Last Synced: 2024-09-27T20:22:31.168Z (4 months ago)
- Topics: docker, flask, python, scikit-learn, sklearn, soluto-open-source
- Language: Python
- Homepage:
- Size: 13.7 KB
- Stars: 135
- Watchers: 23
- Forks: 41
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
## DEPRECATED
This repository is no longer maintained and has been archived. Feel free to browse the code, but please migrate to other solutions.## python-flask-docker-sklearn-template
A simple example of python api for real time machine learning.
On init, a simple linear regression model is created and saved on machine. On request arrival for prediction, the simple model is loaded and returning prediction.
For more information read [this post](https://blog.solutotlv.com/deployed-scikit-learn-model-flask-docker/?utm_source=Github&utm_medium=python-flask-sklearn-docker-template)# requirements
docker installed# Run on docker - local
docker build . -t {some tag name} -f ./Dockerfile_local
detached : docker run -p 3000:5000 -d {some tag name}
interactive (recommended for debug): docker run -p 3000:5000 -it {some tag name}# Run on docker - production
Using uWSGI and nginx for production
docker build . -t {some tag name}
detached : docker run -p 3000:80 -d {some tag name}
interactive (recommended for debug): docker run -p 3000:80 -it {some tag name}# Run on local computer
python -m venv env
source env/bin/activate
python -m pip install -r ./requirements.txt
python main.py# Use sample api
127.0.0.1:3000/isAlive
127.0.0.1:3000/prediction/api/v1.0/some_prediction?f1=4&f2=4&f3=4