https://github.com/somjit101/dimensionality-reduction-pca-t-sne
Implementation of Principal Component Analysis (PCA) and t-Distributed Stochastic Neighbour Embedding (t-SNE) as Dimensionality Reduction techniques using MNIST Dataset.
https://github.com/somjit101/dimensionality-reduction-pca-t-sne
dimensionality-reduction mnist-dataset mnist-image-dataset pca principal-component-analysis t-sne
Last synced: about 2 months ago
JSON representation
Implementation of Principal Component Analysis (PCA) and t-Distributed Stochastic Neighbour Embedding (t-SNE) as Dimensionality Reduction techniques using MNIST Dataset.
- Host: GitHub
- URL: https://github.com/somjit101/dimensionality-reduction-pca-t-sne
- Owner: somjit101
- Created: 2021-06-14T19:05:20.000Z (almost 4 years ago)
- Default Branch: main
- Last Pushed: 2021-06-14T19:26:41.000Z (almost 4 years ago)
- Last Synced: 2025-01-16T18:26:39.765Z (3 months ago)
- Topics: dimensionality-reduction, mnist-dataset, mnist-image-dataset, pca, principal-component-analysis, t-sne
- Language: Jupyter Notebook
- Homepage:
- Size: 9.05 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Dimensionality-Reduction-PCA-t-SNE
Implementation of Principal Component Analysis (**PCA**) and t-Distributed Stochastic Neighbour Embedding (**t-SNE**) as Dimensionality Reduction techniques using the [**MNIST**](http://yann.lecun.com/exdb/mnist/) Handwritten Digits Dataset.## Implementations
* PCA - Implementation from scratch and using [Scikit-Learn PCA object](https://scikit-learn.org/stable/modules/decomposition.html#principal-component-analysis-pca).
* t-SNE - Implementation using [Scikit-Learn t-SNE Object](https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html) for visualization of high-dimensional data on 2D.