Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/songhan/SqueezeNet-Residual
residual-SqueezeNet
https://github.com/songhan/SqueezeNet-Residual
Last synced: about 1 month ago
JSON representation
residual-SqueezeNet
- Host: GitHub
- URL: https://github.com/songhan/SqueezeNet-Residual
- Owner: songhan
- License: bsd-2-clause
- Created: 2016-04-22T21:33:00.000Z (over 8 years ago)
- Default Branch: master
- Last Pushed: 2019-03-15T20:03:57.000Z (over 5 years ago)
- Last Synced: 2024-08-01T22:49:56.029Z (4 months ago)
- Language: CSS
- Size: 4.95 MB
- Stars: 154
- Watchers: 19
- Forks: 67
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-image-classification - unofficial-caffe : https://github.com/songhan/SqueezeNet-Residual
- awesome-image-classification - unofficial-caffe : https://github.com/songhan/SqueezeNet-Residual
README
- March 15, 2019: for our most updated work on model compression and acceleration, please reference:
[ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware](https://arxiv.org/pdf/1812.00332.pdf) (ICLR’19)
[AMC: AutoML for Model Compression and Acceleration on Mobile Devices](https://arxiv.org/pdf/1802.03494.pdf) (ECCV’18)
[HAQ: Hardware-Aware Automated Quantization](https://arxiv.org/pdf/1811.08886.pdf) (CVPR’19)
[Defenstive Quantization: When Efficiency Meets Robustness](https://openreview.net/pdf?id=ryetZ20ctX) (ICLR'19)
# SqueezeNet-ResidualThe repo contains the residual-SqueezeNet, which is obtained by adding bypass layer to SqueezeNet_v1.0. Residual-SqueezeNet improves the top-1 accuracy of SqueezeNet by 2.9% on ImageNet without changing the model size(only 4.8MB).
# Related repo and paper
[SqueezeNet](https://github.com/DeepScale/SqueezeNet)[SqueezeNet-Deep-Compression](https://github.com/songhan/SqueezeNet-Deep-Compression)
[SqueezeNet-Generator](https://github.com/songhan/SqueezeNet-Generator)
[SqueezeNet-DSD-Training](https://github.com/songhan/SqueezeNet-DSD-Training)
[SqueezeNet-Residual](https://github.com/songhan/SqueezeNet-Residual)
If you find residual-SqueezeNet useful in your research, please consider citing the paper:
@article{SqueezeNet,
title={SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5MB model size},
author={Iandola, Forrest N and Han, Song and Moskewicz, Matthew W and Ashraf, Khalid and Dally, William J and Keutzer, Kurt},
journal={arXiv preprint arXiv:1602.07360},
year={2016}
}
# Usage
$CAFFE_ROOT/build/tools/caffe test --model=trainval.prototxt --weights=SqueezeNet_residual_top1_0.6038_top5_0.8250.caffemodel --iterations=1000 --gpu 0
# Result
I0422 14:07:39.810755 32299 caffe.cpp:293] accuracy_top1 = 0.603759
I0422 14:07:39.810775 32299 caffe.cpp:293] accuracy_top5 = 0.824981
I0422 14:07:39.810792 32299 caffe.cpp:293] loss = 1.76711 (* 1 = 1.76711 loss)
# Architecture of the residual SqueezeNet
The building block: