Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/sootlasten/disentangled-representation-papers

A curated list of research papers related to learning disentangled representations
https://github.com/sootlasten/disentangled-representation-papers

Last synced: 13 days ago
JSON representation

A curated list of research papers related to learning disentangled representations

Awesome Lists containing this project

README

        

This is a curated list of papers on disentangled (and an occasional "conventional") representation learning. Within each year, the papers are ordered from newest to oldest. I've scored the importance/quality of each paper (in my own personal opinion) on a scale of 1 to 3, as indicated by the number of stars in front of each entry in the list. If stars are replaced by a question mark, then it represents a paper I haven't fully read yet, in which case I'm unable to judge its quality.

### 2019

* ? Are Disentangled Representations Helpful for Abstract Visual Reasoning? (May, Steenkiste et. al.) [[paper]](https://arxiv.org/abs/1905.12506)

## 2018

* ? Hyperprior Induced Unsupervised Disentanglement of Latent Representations (Jan, Ansari and Soh) [[paper]](https://arxiv.org/abs/1809.04497)
* ? A Spectral Regularizer for Unsupervised Disentanglement (Dec, Ramesh et. al.) [[paper]](https://arxiv.org/abs/1812.01161v1)
* ? Disentangling Disentanglement (Dec, Mathieu et. al.) [[paper]](https://arxiv.org/abs/1812.02833v1)
* ? Recent Advances in Autoencoder-Based Representation Learning (Dec, Tschannen et. al.) [[paper]](http://bayesiandeeplearning.org/2018/papers/151.pdf?fbclid=IwAR0AKPuAsCFFsTCJ52o6-BkJebR9UuURnesksd1wf5QfLvuU2LBetc7moKc)
* ? Visual Object Networks: Image Generation with Disentangled 3D Representation (Dec, Zhu et. al.) [[paper]](https://arxiv.org/abs/1812.02725v1)
* ? Towards a Definition of Disentangled Representations (Dec, Higgins et. al.) [[paper]](https://arxiv.org/pdf/1812.02230v1.pdf)
* ? Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations (Dec, Locatello et. al.) [[paper]](https://arxiv.org/abs/1811.12359v1)
* ? Learning Deep Representations by Mutual Information Estimation and Maximization (Aug, Hjelm et. al.) [[paper]](https://arxiv.org/abs/1808.06670)
* ** Life-Long Disentangled Representation Learning with Cross-Domain Latent Homologies (Aug, Achille et. al.) [[paper]](https://arxiv.org/abs/1808.06508)
* ? Learning to Decompose and Disentangle Representations for Video Prediction (Hsieh et. al.) [[paper]](https://arxiv.org/abs/1806.04166)
* ? Insights on Representational Similarity in Neural Networks with Canonical Correlation (Jun, Morcos et. al.) [[paper]](https://arxiv.org/abs/1806.05759)
* ** Sequential Attend, Infer, Repeat: Generative Modelling of Moving Objects (Jun, Kosiorek et. al.) [[paper]](https://arxiv.org/abs/1806.01794)
* __***__ Neural Scene Representation and Rendering (Jun, Eslami et. al.) [[paper]](https://deepmind.com/research/publications/neural-scene-representation-and-rendering/)
* ? Image-to-image translation for cross-domain disentanglement (May, Gonzalez-Garcia et. al.) [[paper]](https://arxiv.org/abs/1805.09730)
* \* Learning Disentangled Joint Continuous and Discrete Representations (May, Dupont) [[paper]](https://arxiv.org/abs/1804.00104) [[code]](https://github.com/Schlumberger/joint-vae)
* ? DGPose: Disentangled Semi-supervised Deep Generative Models for Human Body Analysis (Apr, Bem et. al.) [[paper]](https://arxiv.org/abs/1804.06364)
* ? Structured Disentangled Representations (Apr, Esmaeili et. al.) [[paper]](https://arxiv.org/abs/1804.02086)
* ** Understanding disentangling in β-VAE (Apr, Burgess et. al.) [[paper]](https://arxiv.org/abs/1804.03599)
* ? On the importance of single directions for generalization (Mar, Morcos et. al.) [[paper]](https://arxiv.org/abs/1803.06959)
* ** Unsupervised Representation Learning by Predicting Image Rotations (Mar, Gidaris et. al.) [[paper]](https://arxiv.org/abs/1803.07728)
* ? Disentangled Sequential Autoencoder (Mar, Li & Mandt) [[paper]](https://arxiv.org/abs/1803.02991)
* __***__ Isolating Sources of Disentanglement in Variational Autoencoders (Mar, Chen et. al.) [[paper]](https://arxiv.org/abs/1802.04942v2) [[code]](https://github.com/rtqichen/beta-tcvae)
* ** Disentangling by Factorising (Feb, Kim & Mnih) [[paper]](https://arxiv.org/abs/1802.05983)
* ** Disentangling the Independently Controllable Factors of Variation by Interacting with the World (Feb, Bengio's group) [[paper]](https://arxiv.org/abs/1802.09484)
* ? On the Latent Space of Wasserstein Auto-Encoders (Feb, Rubenstein et. al.) [[paper]](https://arxiv.org/abs/1802.03761)
* ? Auto-Encoding Total Correlation Explanation (Feb, Gao et. al.) [[paper]](https://arxiv.org/abs/1802.05822v1)
* ? Fixing a Broken ELBO (Feb, Alemi et. al.) [[paper]](https://arxiv.org/abs/1711.00464)
* \* Learning Disentangled Representations with Wasserstein Auto-Encoders (Feb, Rubenstein et. al.) [[paper]](https://openreview.net/forum?id=Hy79-UJPM)
* ? Rethinking Style and Content Disentanglement in Variational Autoencoders (Feb, Shu et. al.) [[paper]](https://openreview.net/forum?id=B1rQtwJDG)
* ? A Framework for the Quantitative Evaluation of Disentangled Representations (Feb, Eastwood & Williams) [[paper]](https://openreview.net/forum?id=By-7dz-AZ)

## 2017

* ? The β-VAE's Implicit Prior (Dec, Hoffman et. al.) [[paper]](http://bayesiandeeplearning.org/2017/papers/66.pdf)
* ** The Multi-Entity Variational Autoencoder (Dec, Nash et. al.) [[paper]](http://charlienash.github.io/assets/docs/mevae2017.pdf)
* ? Learning Independent Causal Mechanisms (Dec, Parascandolo et. al.) [[paper]](https://arxiv.org/abs/1712.00961)
* ? Variational Inference of Disentangled Latent Concepts from Unlabeled Observations (Nov, Kumar et. al.) [[paper]](https://arxiv.org/abs/1711.00848)
* \* Neural Discrete Representation Learning (Nov, Oord et. al.) [[paper]](https://arxiv.org/abs/1711.00937v2)
* ? Disentangled Representations via Synergy Minimization (Oct, Steeg et. al.) [[paper]](https://arxiv.org/abs/1710.03839v1)
* ? Unsupervised Learning of Disentangled and Interpretable Representations from Sequential Data (Sep, Hsu et. al.) [[paper]](https://arxiv.org/abs/1709.07902) [[code]](https://github.com/wnhsu/ScalableFHVAE)
* \* Experiments on the Consciousness Prior (Sep, Bengio & Fedus) [[paper]](https://ai-on.org/pdf/bengio-consciousness-prior.pdf)
* ** The Consciousness Prior (Sep, Bengio) [[paper]](https://arxiv.org/abs/1709.08568)
* ? Disentangling Motion, Foreground and Background Features in Videos (Jul, Lin. et. al.) [[paper]](https://imatge-upc.github.io/unsupervised-2017-cvprw/)
* \* SCAN: Learning Hierarchical Compositional Visual Concepts (Jul, Higgins. et. al.) [[paper]]( https://arxiv.org/abs/1707.03389)
* __***__ DARLA: Improving Zero-Shot Transfer in Reinforcement Learning (Jul, Higgins et. al.) [[paper]](https://arxiv.org/abs/1707.08475)
* ** Unsupervised Learning via Total Correlation Explanation (Jun, Ver Steeg) [[paper]](https://arxiv.org/abs/1706.08984) [[code]](https://github.com/gregversteeg/CorEx)
* ? PixelGAN Autoencoders (Jun, Makhzani & Frey) [[paper]](https://arxiv.org/abs/1706.00531)
* ? Emergence of Invariance and Disentanglement in Deep Representations (Jun, Achille & Soatto) [[paper]](https://arxiv.org/abs/1706.01350)
* ** A Simple Neural Network Module for Relational Reasoning (Jun, Santoro et. al.) [[paper]](https://arxiv.org/abs/1706.01427)
* ? Learning Disentangled Representations with Semi-Supervised Deep Generative Models (Jun, Siddharth, et al.) [[paper]](https://arxiv.org/abs/1706.00400)
* ? Unsupervised Learning of Disentangled Representations from Video (May, Denton & Birodkar) [[paper]](https://arxiv.org/abs/1705.10915)

## 2016

* ** Deep Variational Information Bottleneck (Dec, Alemi et. al.) [[paper]](https://arxiv.org/abs/1612.00410)
* __***__ β-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework (Nov, Higgins et. al.) [[paper]](https://openreview.net/forum?id=Sy2fzU9gl) [[code]](https://github.com/sootlasten/beta-vae)
* ? Disentangling factors of variation in deep representations using adversarial training (Nov, Mathieu et. al.) [[paper]](https://arxiv.org/abs/1611.03383)
* ** Information Dropout: Learning Optimal Representations Through Noisy Computation (Nov, Achille & Soatto) [[paper]](https://arxiv.org/abs/1611.01353)
* ** InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets (Jun, Chen et. al.) [[paper]](https://arxiv.org/abs/1606.03657)
* __***__ Attend, Infer, Repeat: Fast Scene Understanding with Generative Models (Mar, Eslami et. al.) [[paper]](https://arxiv.org/abs/1603.08575?context=cs)
* __***__ Building Machines That Learn and Think Like People (Apr, Lake et. al.) [[paper]](https://arxiv.org/abs/1604.00289)
* \* Understanding Visual Concepts with Continuation Learning (Feb, Whitney et. al.) [[paper]](https://arxiv.org/abs/1602.06822)
* ? Disentangled Representations in Neural Models (Feb, Whitney) [[paper]](https://arxiv.org/abs/1602.02383v1)

## Older work

* ** Deep Convolutional Inverse Graphics Network (2015, Kulkarni et. al.) [[paper]](https://arxiv.org/abs/1503.03167)
* ? Learning to Disentangle Factors of Variation with Manifold Interaction (2014, Reed et. al.) [[paper]](http://proceedings.mlr.press/v32/reed14.pdf)
* __***__ Representation Learning: A Review and New Perspectives (2013, Bengio et. al.) [[paper]](https://arxiv.org/abs/1206.5538?context=cs)
* ? Disentangling Factors of Variation via Generative Entangling (2012, Desjardinis et. al.) [[paper]](https://arxiv.org/abs/1210.5474)
* __***__ Transforming Auto-encoders (2011, Hinton et. al.) [[paper]](https://www.cs.toronto.edu/~fritz/absps/transauto6.pdf)
* ** Learning Factorial Codes By Predictability Minimization (1992, Schmidhuber) [[paper]](https://www.mitpressjournals.org/doi/pdf/10.1162/neco.1992.4.6.863)
* __***__ Self-Organization in a Perceptual Network (1988, Linsker) [[paper]](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=36)

## Talks

* Building Machines that Learn & Think Like People (2018, Tenenbaum) [[youtube]](https://www.youtube.com/watch?v=RB78vRUO6X8&t=1807s)
* From Deep Learning of Disentangled Representations to Higher-level Cognition (2018, Bengio) [[youtube]](https://www.youtube.com/watch?v=Yr1mOzC93xs)
* What is wrong with convolutional neural nets? (2017, Hinton) [[youtube]](https://www.youtube.com/watch?v=rTawFwUvnLE&t=2152s)