https://github.com/sorna-fast/exercise_loanamountforecast
Forecasting the amount of the home loan through the learning model of the regression of the elastic method
https://github.com/sorna-fast/exercise_loanamountforecast
elastic-net pandas-dataframe regression seaborn sklearn
Last synced: 11 months ago
JSON representation
Forecasting the amount of the home loan through the learning model of the regression of the elastic method
- Host: GitHub
- URL: https://github.com/sorna-fast/exercise_loanamountforecast
- Owner: sorna-fast
- Created: 2024-12-31T15:55:27.000Z (about 1 year ago)
- Default Branch: master
- Last Pushed: 2025-01-06T16:56:04.000Z (about 1 year ago)
- Last Synced: 2025-02-25T06:15:37.449Z (11 months ago)
- Topics: elastic-net, pandas-dataframe, regression, seaborn, sklearn
- Language: Jupyter Notebook
- Homepage:
- Size: 35.2 KB
- Stars: 1
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
Here's a README for your "Loan Amount Forecast" project with a mix of Persian and English:
---
# Exercise - Loan Amount Forecast
## Overview
In this project, we use Elastic Net regression to forecast the amount of home loans based on provided data. The model is built using Python's Scikit-learn, Pandas, and Seaborn libraries for data processing, modeling, and visualization.
## Features
- Elastic Net Regression Model for loan amount prediction
- Data preprocessing and feature selection
- Visualization of results and performance metrics
## Requirements
- Python 3.x
- Pandas
- Scikit-learn
- Seaborn
## Installation
1. Clone the repository:
`git clone https://github.com/sorna-fast/exercise_LoanAmountForecast.git`
2. Install the required libraries:
`pip install -r requirements.txt`
3. Run the Jupyter notebook to explore the model.
---
# تمرین پیشبینی مبلغ وام مسکن
## توضیحات پروژه
در این پروژه، از رگرسیون Elastic Net برای پیشبینی مبلغ وام مسکن استفاده شده است. مدل با استفاده از کتابخانههای Pandas، Scikit-learn و Seaborn برای پردازش دادهها، مدلسازی و تجسم نتایج ساخته شده است.
## ویژگیها
- مدل رگرسیون Elastic Net برای پیشبینی مبلغ وام
- پیشپردازش دادهها و انتخاب ویژگیها
- تجزیه و تحلیل نتایج و ارزیابی مدل
## پیشنیازها
- Python 3.x
- Pandas
- Scikit-learn
- Seaborn
## نصب
1. کلون کردن مخزن:
`git clone https://github.com/sorna-fast/exercise_LoanAmountForecast.git`
2. نصب وابستگیها:
`pip install -r requirements.txt`
3. اجرای دفترچه یادداشت Jupyter برای کاوش در مدل.
---
### 📧 ارتباط با من | Contact
برای هرگونه سوال یا پیشنهاد، میتوانید از طریق ایمیل با من تماس بگیرید: masudpythongit@gmail.com