https://github.com/soujanyaporia/multimodal-sentiment-analysis
Attention-based multimodal fusion for sentiment analysis
https://github.com/soujanyaporia/multimodal-sentiment-analysis
attention attention-mechanism conversational-agents dialogue-systems lstm multimodality natural-language-processing sentiment-analysis sentiment-classification tensorflow
Last synced: 17 days ago
JSON representation
Attention-based multimodal fusion for sentiment analysis
- Host: GitHub
- URL: https://github.com/soujanyaporia/multimodal-sentiment-analysis
- Owner: soujanyaporia
- License: mit
- Created: 2018-07-06T12:13:31.000Z (almost 7 years ago)
- Default Branch: master
- Last Pushed: 2024-04-08T14:28:02.000Z (about 1 year ago)
- Last Synced: 2025-03-29T21:04:25.207Z (24 days ago)
- Topics: attention, attention-mechanism, conversational-agents, dialogue-systems, lstm, multimodality, natural-language-processing, sentiment-analysis, sentiment-classification, tensorflow
- Language: Python
- Size: 87.3 MB
- Stars: 345
- Watchers: 6
- Forks: 74
- Open Issues: 7
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# 🔥 🔥 🔥 Notice: This repository will no longer be maintained. Instead, we are are moving all our multimodal works to this new centralized repository: [https://github.com/declare-lab/multimodal-deep-learning](https://github.com/declare-lab/multimodal-deep-learning).
# Attention-based multimodal fusion for sentiment analysis
Attention-based multimodal fusion for sentiment analysisCode for the paper
[Context-Dependent Sentiment Analysis in User-Generated Videos](http://sentic.net/context-dependent-sentiment-analysis-in-user-generated-videos.pdf) (ACL 2017).
[Multi-level Multiple Attentions for Contextual Multimodal Sentiment Analysis](https://ieeexplore.ieee.org/abstract/document/8215597/)(ICDM 2017).
")
### Preprocessing
**Edit:** the create_data.py is obsolete. The pre-processed datasets have already been provided in the dataset/ folder in the repo. Use them directly.As data is typically present in utterance format, we combine all the utterances belonging to a video using the following code
```
python create_data.py
```Note: This will create speaker independent train and test splits
In dataset/mosei, extract the zip into a folder named 'raw'.
Also, extract 'unimodal_mosei_3way.pickle.zip'### Running the model
Sample command:
With attention-based fusion:
```
python run.py --unimodal True --fusion True
python run.py --unimodal False --fusion True
```
Without attention-based and with concatenation-based fusion:
```
python run.py --unimodal True --fusion False
python run.py --unimodal False --fusion False
```
Utterance level attention:
```
python run.py --unimodal False --fusion True --attention_2 True
python run.py --unimodal False --fusion True --attention_2 True
```
Note:
1. Keeping the unimodal flag as True (default False) shall train all unimodal lstms first (level 1 of the network mentioned in the paper)
2. Setting --fusion True applies only to multimodal network.### Datasets:
We provide results on the [MOSI](https://arxiv.org/pdf/1606.06259.pdf), [MOSEI ](http://aclweb.org/anthology/P18-1208) and [IEMOCAP](https://sail.usc.edu/iemocap/) datasets.
Please cite the creators.We are adding more datasets, stay tuned.
Use ```--data [mosi|mosei|iemocap] and --classes [2|3|6]``` in the above commands to test different configurations on different datasets.
mosi: 2 classes
mosei: 3 classes
iemocap: 6 classesExample:
```
python run.py --unimodal False --fusion True --attention_2 True --data mosei --classes 3
```#### Dataset details
##### MOSI:
2 classes: Positive/Negative
Raw Features: (Pickle files)
Audio: dataset/mosi/raw/audio_2way.pickle
Text: dataset/mosi/raw/text_2way.pickle
Video: dataset/mosi/raw/video_2way.pickle**Each file contains:
**
train_data, train_label, test_data, test_label, maxlen, train_length, test_lengthtrain_data - np.array of dim (62, 63, feature_dim)
train_label - np.array of dim (62, 63, 2)
test_data - np.array of dim (31, 63, feature_dim)
test_label - np.array of dim (31, 63, 2)
maxlen - max utterance length int of value 63
train_length - utterance length of each video in train data.
test_length - utterance length of each video in test data.Train/Test split: 62/31 videos. Each video has utterances. The videos are padded to 63 utterances.
##### IEMOCAP:
6 classes: happy/sad/neutral/angry/excited/frustrated
Raw Features: dataset/iemocap/raw/IEMOCAP_features_raw.pkl (Pickle files)
The file contains:
videoIDs[vid] = List of utterance IDs in this video in the order of occurance
videoSpeakers[vid] = List of speaker turns. e.g. [M, M, F, M, F]. here M = Male, F = Female
videoText[vid] = List of textual features for each utterance in video vid.
videoAudio[vid] = List of audio features for each utterance in video vid.
videoVisual[vid] = List of visual features for each utterance in video vid.
videoLabels[vid] = List of label indices for each utterance in video vid.
videoSentence[vid] = List of sentences for each utterance in video vid.
trainVid = List of videos (videos IDs) in train set.
testVid = List of videos (videos IDs) in test set.Refer to the file dataset/iemocap/raw/loadIEMOCAP.py for more information.
We use this data to create a speaker independent train and test splits in the format. (videos x utterances x features)Train/Test split: 120/31 videos. Each video has utterances. The videos are padded to 110 utterances.
##### MOSEI:
3 classes: positive/negative/neutral
Raw Features: (Pickle files)
Audio: dataset/mosei/raw/audio_3way.pickle
Text: dataset/mosei/raw/text_3way.pickle
Video: dataset/mosei/raw/video_3way.pickleThe file contains:
train_data, train_label, test_data, test_label, maxlen, train_length, test_lengthtrain_data - np.array of dim (2250, 98, feature_dim)
train_label - np.array of dim (62, 63, 2)
test_data - np.array of dim (31, 63, feature_dim)
test_label - np.array of dim (31, 63, 2)
maxlen - max utterance length int of value 98
train_length - utterance length of each video in train data.
test_length - utterance length of each video in test data.Train/Test split: 2250/678 videos. Each video has utterances. The videos are padded to 98 utterances.
### Citation
If using this code, please cite our work using :
```
@inproceedings{soujanyaacl17,
title={Context-dependent sentiment analysis in user-generated videos},
author={Poria, Soujanya and Cambria, Erik and Hazarika, Devamanyu and Mazumder, Navonil and Zadeh, Amir and Morency, Louis-Philippe},
booktitle={Association for Computational Linguistics},
year={2017}
}@inproceedings{poriaicdm17,
author={S. Poria and E. Cambria and D. Hazarika and N. Mazumder and A. Zadeh and L. P. Morency},
booktitle={2017 IEEE International Conference on Data Mining (ICDM)},
title={Multi-level Multiple Attentions for Contextual Multimodal Sentiment Analysis},
year={2017},
pages={1033-1038},
keywords={data mining;feature extraction;image classification;image fusion;learning (artificial intelligence);sentiment analysis;attention-based networks;context learning;contextual information;contextual multimodal sentiment;dynamic feature fusion;multilevel multiple attentions;multimodal sentiment analysis;recurrent model;utterances;videos;Context modeling;Feature extraction;Fuses;Sentiment analysis;Social network services;Videos;Visualization},
doi={10.1109/ICDM.2017.134},
month={Nov},}
```### Credits
[Soujanya Poria](http://sporia.info/)
[Gangeshwar Krishnamurthy](http://www.gangeshwark.com/) ([email protected]; Github: @gangeshwark)