https://github.com/soumik12345/enet
Pytorch Implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation (https://arxiv.org/abs/1606.02147)
https://github.com/soumik12345/enet
camvid-dataset deep-learning enet mish pytorch real-time-semantic-segmentation semantic-segmentation
Last synced: 27 days ago
JSON representation
Pytorch Implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation (https://arxiv.org/abs/1606.02147)
- Host: GitHub
- URL: https://github.com/soumik12345/enet
- Owner: soumik12345
- Created: 2019-12-09T17:01:53.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2020-01-24T10:45:17.000Z (over 5 years ago)
- Last Synced: 2025-05-12T13:12:22.280Z (27 days ago)
- Topics: camvid-dataset, deep-learning, enet, mish, pytorch, real-time-semantic-segmentation, semantic-segmentation
- Language: Jupyter Notebook
- Size: 47.6 MB
- Stars: 11
- Watchers: 2
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Enet
[](https://mybinder.org/v2/gh/soumik12345/Enet/master)
[](https://paperswithcode.com/sota/real-time-semantic-segmentation-on-cityscapes?p=enet-a-deep-neural-network-architecture-for)
[](http://hits.dwyl.io/soumik12345/Enet)Pytorch Implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation (https://arxiv.org/abs/1606.02147). It is currently the 13th Best Model for [Real-Time Semantic Segmentation on Cityscapes test ](https://paperswithcode.com/sota/real-time-semantic-segmentation-on-cityscapes).

### Training Notebooks
**Note:** Try using the Binder badge to inspect the notebooks.
- [Enet with PReLU Encoder on CamVid](https://github.com/soumik12345/Enet/blob/master/Enet_CamVid.ipynb)
- [Enet with Mish Encoder on CamVid](https://github.com/soumik12345/Enet/blob/master/Enet_CamVid_Mish.ipynb)## Training Results on [CamVid Dataset](https://www.kaggle.com/jcoral02/camvid)
### Inference on Training Data

### Inference on Validation Data

## TODO
- [x] Implement Vanilla Enet Architecture
- [x] Encorporate Custom Activations for Codebase
- [x] Train Enet on CamVid
- [x] Train Enet with Mish Encoder on CamVid
- [x] Experiment to find best Mish Version of Enet -> PReLU encoder + Mish Decoder
- [ ] Repeat Same experiments for Cityscapes Dataset
- [ ] Repeat Same experiments for SUN RGB-D Dataset
- [ ] Implement Lovasz Softmax Loss## References
- [ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation](https://arxiv.org/abs/1606.02147)
- [Tensorflow Enet](https://github.com/kwotsin/TensorFlow-ENet)
- [ENet on TowardsDataScience](https://towardsdatascience.com/enet-a-deep-neural-architecture-for-real-time-semantic-segmentation-2baa59cf97e9)
- [Mish: Self Regularized Non-Monotonic Activation Function](https://github.com/digantamisra98/Mish)
- [Mish on Arxiv](https://arxiv.org/abs/1908.08681)