https://github.com/soumilgit/xyz-bank-customer-churn-predictor
A modular bank customer churn predictor ML project leveraging Groq API, Streamlit, Supabase, SciPy, Plotly and EmailJS, alongside libraries - NumPy, Pandas, Utils, OS, Base64, Re, Pillow & DateTime.
https://github.com/soumilgit/xyz-bank-customer-churn-predictor
decision-tree-classifier emailjs fintech html-css-javascript jupyter-notebook mlops naive-bayes-classifier openai pickle-file pillow-library python qwen3-32b rag-pipeline random-forest-classifier scikit-learn smote streamlit supabase svm-classifier xgboost-classifier
Last synced: about 1 month ago
JSON representation
A modular bank customer churn predictor ML project leveraging Groq API, Streamlit, Supabase, SciPy, Plotly and EmailJS, alongside libraries - NumPy, Pandas, Utils, OS, Base64, Re, Pillow & DateTime.
- Host: GitHub
- URL: https://github.com/soumilgit/xyz-bank-customer-churn-predictor
- Owner: Soumilgit
- License: mit
- Created: 2025-02-01T06:09:20.000Z (8 months ago)
- Default Branch: main
- Last Pushed: 2025-08-25T17:34:16.000Z (about 2 months ago)
- Last Synced: 2025-08-25T19:28:41.015Z (about 2 months ago)
- Topics: decision-tree-classifier, emailjs, fintech, html-css-javascript, jupyter-notebook, mlops, naive-bayes-classifier, openai, pickle-file, pillow-library, python, qwen3-32b, rag-pipeline, random-forest-classifier, scikit-learn, smote, streamlit, supabase, svm-classifier, xgboost-classifier
- Language: Jupyter Notebook
- Homepage: https://cust-churn-pred-bank.streamlit.app/
- Size: 13.7 MB
- Stars: 21
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- Funding: .github/FUNDING.yml
- License: LICENSE
Awesome Lists containing this project
README
# Bank Customer Churn Predictor
## Architecture
## Description + stats
- Bank customer churn prediction application utilizing:| Name of model | Accuracy |
|--------------------------------------|------------|
| Decision Tree | 79.13% |
| K-Nearest Neighbors (KNN) | 82.00% |
| Naive Bayes | 82.25% |
| Random Forest Classifier | 83.75% |
| Support Vector Machine (SVM) | 84.13% |
| XGBoost Classifier | 84.25% |
| XGBoost + SMOTE Classifier | 83.87% |
| Voting Classifier | 83.63% |
| Qwen3 32B LLM [OpenAI] | — |- It ingests
4000
entries to predict churn risk with visual insights, AI-generated explanations and emails.## Tech Stack
| Purpose | Technologies |
|----------------------|--------------|
| **Core Tech** |    |
| **Frontend & Framework** |     |
| **Backend + DB** |   |
| **Other Libraries** |     |## Database + authentication
https://github.com/user-attachments/assets/9aea195d-7073-4813-9a08-3648790b84ce## Quick Start
1. Clone repo
2. ```
pip install -r requirements.txt
```
3. Store below in a secrets.toml file under a .streamlit folder :
```
GROQ_API_KEY = ""
SUPABASE_URL = ""
SUPABASE_SERVICE_ROLE_KEY= ""
EMAILJS_PUBLIC_KEY= ""
EMAILJS_TEMPLATE_ID= ""
EMAILJS_SERVICE_ID= ""
```
4. ```
streamlit run main.py
```## Research references + custom dataset badge-links
## License
This project is licensed under the [MIT License](https://github.com/Soumilgit/Datathon_Team-DataP1ac3X.c0m/blob/main/LICENSE).