Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/soumyaco/kneighbors-classifier-diabetes
Diabetes prediction using KNN-Classifier algorithm. Step by step guided notebook
https://github.com/soumyaco/kneighbors-classifier-diabetes
data-science data-visualization diabetes-dateset-analysis diabetes-prediction knn-classification machine-learning-algorithms python3
Last synced: 10 days ago
JSON representation
Diabetes prediction using KNN-Classifier algorithm. Step by step guided notebook
- Host: GitHub
- URL: https://github.com/soumyaco/kneighbors-classifier-diabetes
- Owner: SoumyaCO
- License: gpl-3.0
- Created: 2023-08-17T15:26:16.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2023-08-18T19:32:37.000Z (over 1 year ago)
- Last Synced: 2024-10-25T11:49:58.443Z (about 2 months ago)
- Topics: data-science, data-visualization, diabetes-dateset-analysis, diabetes-prediction, knn-classification, machine-learning-algorithms, python3
- Language: Jupyter Notebook
- Homepage: https://www.kaggle.com/code/soumyadipbhat/knn-diabetes-classification
- Size: 853 KB
- Stars: 1
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Predicting Diabetes using KNeighborsClassifier.
![accuracy vs n_neighbors graph](https://github.com/SoumyaCO/KNeighbors-classifier-diabetes/blob/main/knn-image.png)
### 1. π― Aim:
Train a model with the diabetes data to predict a patient has diabetes or not.
### 2. π Concepts Covered:
* Data Manupulation
* Feature Engineering
* Scaling a dataset
* Hyperparameter tuning with `GridSearchCV`
* `confusion_matix`
* F1_score, precision
* Data Visualization### 3. π Approach:
> * Importing the data
> * Understanding the features
> * Cleaning the data
> * Scale and Impute the data
> * Instantiate a `KNeighborsClassifier()` model from `sklearn.neighbors`
> * To have the right number of `n_neighbors` performed `GridSearchCV`
> * After getting the `grid.best_params_` visualized `confusion_matrix`
> * Calculated Precision, Recall, F1_score
> * Lastly visualized a accuracy vs n_neighbors plotπ In the notebook I've provided detailed codes and concepts. If you like it please give a star βοΈ
βIf you are trying it in **google colab** you have to upload the dataset [dibetes.csv]
π§π»βπ» My Profile:
> * [πLinkedIn ](https://www.linkedin.com/in/soumyadip-bhattacharjya-993974234/)
> * [π Kaggle](https://www.kaggle.com/soumyadipbhat)