Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/sovit-123/image-deblurring-using-deep-learning
PyTorch implementation of image deblurring using deep learning. Use a simple convolutional autoencoder neural network to deblur Gaussian blurred images.
https://github.com/sovit-123/image-deblurring-using-deep-learning
computer-vision computer-vision-neural-networks convolutional-neural-networks deep-learning deep-neural-networks deeplearning-image-deblur image-deblur image-deblurring machine-learning neural-networks pytorch
Last synced: 20 days ago
JSON representation
PyTorch implementation of image deblurring using deep learning. Use a simple convolutional autoencoder neural network to deblur Gaussian blurred images.
- Host: GitHub
- URL: https://github.com/sovit-123/image-deblurring-using-deep-learning
- Owner: sovit-123
- Created: 2020-04-25T02:17:16.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2023-02-16T09:24:50.000Z (almost 2 years ago)
- Last Synced: 2023-03-05T11:12:41.259Z (almost 2 years ago)
- Topics: computer-vision, computer-vision-neural-networks, convolutional-neural-networks, deep-learning, deep-neural-networks, deeplearning-image-deblur, image-deblur, image-deblurring, machine-learning, neural-networks, pytorch
- Language: Jupyter Notebook
- Homepage:
- Size: 3.75 MB
- Stars: 13
- Watchers: 3
- Forks: 4
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# README
* **First of all, you can find the dataset on Kaggle:**
* **Dataset => https://www.kaggle.com/kwentar/blur-dataset.**
* Get the dataset and extract it inside the `input` folder. Following is the directory structure for the project:
```
├───input
│ ├───defocused_blurred
│ ├───gaussian_blurred
│ ├───motion_blurred
│ └───sharp
├───outputs
│ └───saved_images
└───src
```## Steps to Execute
* I have not used the blurred images that are given in the original dataset for image deblurring. They are spatially variant due to motion blurring and defocus-blurring. I have added Gaussian blurring to the images using the `add_guassian_blur.py` script inside the `src` folder. Then I have used these images for deblurring.
* **The following is the order of execution:**
1. `add_gaussian_blur.py`
2. `deblur_ae.py`
* ***Note: Execute all the scripts while being within the `src` folder inside the terminal***.## Some Results
* **Loss Plot**
![](https://github.com/sovit-123/image-deblurring-using-deep-learning/blob/master/outputs/loss.png?raw=true)
* **Blurred Image**
![](https://github.com/sovit-123/image-deblurring-using-deep-learning/blob/master/outputs/saved_images/blur0.jpg?raw=true)
**Final Deblurred Image**
![](https://github.com/sovit-123/image-deblurring-using-deep-learning/blob/master/outputs/saved_images/val_deblurred39.jpg?raw=true)
## Future Work
* To deblur the spatially variant images inside the `defocused_blurred` and `motion_blurred` folders.
* Add more and better models to `models.py` script.
* **Any useful contribution to the project is highly appreciated.**## References
* Paper: Image Deblurring with BlurredNoisy Image Pairs, **Lu Yuan, Jian Sun, Long Quan, Heung-Yeung Shum.**
* [Image super-resolution as sparse representation of raw image patches](https://www.researchgate.net/publication/221364186_Image_super-resolution_as_sparse_representation_of_raw_image_patches), **Jianchao Yang†, John Wright‡, Yi Ma‡, Thomas Huang†**.
* mage Deblurring and Super-Resolution Using Deep Convolutional Neural Networks](https://www.researchgate.net/publication/328985265_Image_Deblurring_and_Super-Resolution_Using_Deep_Convolutional_Neural_Networks), **Fatma Albluwi, Vladimir A. Krylov & Rozenn Dahyot**.
* [GitHub Code](https://github.com/YapengTian/SRCNN-Keras).