Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/soypat/mu8
Genetic algorithm for unsupervised machine learning in Go.
https://github.com/soypat/mu8
algorithm evolutionary-algorithm genetic-algorithm genetic-algorithms go go-generics golang golang-generics island-model machine-learning optimization optimization-algorithms unsupervised-machine-learning
Last synced: 3 months ago
JSON representation
Genetic algorithm for unsupervised machine learning in Go.
- Host: GitHub
- URL: https://github.com/soypat/mu8
- Owner: soypat
- License: bsd-2-clause
- Created: 2021-12-25T00:48:10.000Z (about 3 years ago)
- Default Branch: main
- Last Pushed: 2023-05-16T23:52:49.000Z (over 1 year ago)
- Last Synced: 2024-06-19T00:23:32.610Z (7 months ago)
- Topics: algorithm, evolutionary-algorithm, genetic-algorithm, genetic-algorithms, go, go-generics, golang, golang-generics, island-model, machine-learning, optimization, optimization-algorithms, unsupervised-machine-learning
- Language: Go
- Homepage:
- Size: 83 KB
- Stars: 120
- Watchers: 4
- Forks: 5
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
[![go.dev reference](https://pkg.go.dev/badge/github.com/soypat/mu8)](https://pkg.go.dev/github.com/soypat/mu8)
[![Go Report Card](https://goreportcard.com/badge/github.com/soypat/mu8)](https://goreportcard.com/report/github.com/soypat/mu8)
[![codecov](https://codecov.io/gh/soypat/mu8/branch/main/graph/badge.svg)](https://codecov.io/gh/soypat/mu8/branch/main)
[![License](https://img.shields.io/badge/License-BSD_2--Clause-orange.svg)](https://opensource.org/licenses/BSD-2-Clause)# μ8
Simple unsupervised machine learning package using Go 1.18 generics.
## User information
μ8 (mu8) uses a simple genetic algorithm implementation to optimize a objective function. It allows optimizing floating point numbers, integers and anything else that can implement the 3 method [`Gene`](./mu8.go) interfaceThe genetic algorithm implementation is currently ~150 lines long and is contained in [`population.go`](./genetic/population.go). It consists of the following steps:
1. Natural selection. Best individual conserved (population champion)
2. Mate.
3. Mutate babies.
4. Rinse and repeat.The file [`mu8.go`](./mu8.go) contains `Genome` and `Gene` interface definitions. Users should implement `Genome` interface and use `Gene` implementations from [`genes`](./genes) package.
There is an Islands Model Genetic Algorithm (IMGA) implementation in [`islands.go`](./genetic/islands.go) using the `Islands` type that makes use of a parallel optimization algorithm to make use of multi-core machines.
## μ8 examples
### Basic usage example
Everything starts with the `mu8.Genome` type on the user side. We define a type that implements it
using a helper type `genes.ContrainedFloat` from the `genes` package. All this `genes` type does
is save us the trouble of writing our own `mu8.Gene` implementation.```go
type mygenome struct {
genoma []genes.ConstrainedFloat
}func (g *mygenome) GetGene(i int) mu8.Gene { return &g.genoma[i] }
func (g *mygenome) Len() int { return len(g.genoma) }// Simulate simply adds the genes. We'd expect the genes to reach the max values of the constraint.
func (g *mygenome) Simulate() (fitness float64) {
for i := range g.genoma {
fitness += g.genoma[i].Value()
}
// fitness must ALWAYS be greater than zero for succesful simulation.
return math.Max(0, fitness/float64(g.Len()))
}
```
We're almost ready to optimize our implementation to maximize it's fitness, which would simply be the addition of all it's genes.Let's write the function that initializes a blank-slate `mygenome`
```go
func newGenome(n int) *mygenome {
return &mygenome{genoma: make([]genes.ConstrainedFloat, n)}
}
```
The function above may be confusing... what is the constraint on the number? By default
`genes.ConstrainedFloat` uses the range [0, 1].```go
const Nindividuals = 100
individuals := make([]*mygenome, Nindividuals)
for i := 0; i < Nindividuals; i++ {
genome := newGenome(genomelen)
// This spices up the initial population so fitnesses are not all zero.
mu8.Mutate(genome, src, .1)
individuals[i] = genome
}pop := genetic.NewPopulation(individuals, rand.NewSource(1), func() *mygenome {
return newGenome(3)
})const Ngeneration = 100
ctx := context.Background()
for i := 0; i < Ngenerations; i++ {
err := pop.Advance(ctx)
if err != nil {
panic(err.Error())
}
err = pop.Selection(0.5, 1)
if err != nil {
panic(err.Error())
}
}
fmt.Printf("champ fitness=%.3f\n", pop.ChampionFitness())
```
The final fitness should be close to 1.0 if the algorithm did it's job. For the code see
[`mu8_test.go`](./mu8_test.go)### Rocket stage optimization example
See [`rocket`](./examples/rocket/main.go) for a demonstration on rocket stage optimization.
Below is the output of said program
```
champHeight:117.967km
champHeight:136.748km
champHeight:140.633km
champHeight:141.873km
champHeight:141.873km
champHeight:141.873km
champHeight:142.883km
champHeight:143.292km
champHeight:143.292km
champHeight:143.292km
champHeight:143.292km
our champion:
Stage 0: coast=281.2s, propMass=0.0kg, Δm=99.35kg/s, totalMass=200.0
Stage 1: coast=0.0s, propMass=1.6kg, Δm=0.01kg/s, totalMass=21.6
```### Gradient "ascent" example
```go
src := rand.NewSource(1)
const (
genomelen = 6
gradMultiplier = 10.0
epochs = 6
)
// Create new individual and mutate it randomly.
individual := newGenome(genomelen)
rng := rand.New(src)
for i := 0; i < genomelen; i++ {
individual.GetGene(i).Mutate(rng)
}
// Prepare for gradient descent.
grads := make([]float64, genomelen)
ctx := context.Background()
// Champion will harbor our best individual.
champion := newGenome(genomelen)
for epoch := 0; epoch < epochs; epoch++ {
// We calculate the gradients of the individual passing a nil
// newIndividual callback since the GenomeGrad type we implemented
// does not require blank-slate initialization.
err := mu8.Gradient(ctx, grads, individual, nil)
if err != nil {
panic(err)
}
// Apply gradients.
for i := 0; i < individual.Len(); i++ {
gene := individual.GetGeneGrad(i)
grad := grads[i]
gene.SetValue(gene.Value() + grad*gradMultiplier)
}
mu8.CloneGrad(champion, individual)
fmt.Printf("fitness=%f with grads=%f\n", individual.Simulate(ctx), grads)
}
```## Contributing
Contributions very welcome! I myself have no idea what I'm doing so I welcome
issues on any matter :)Pull requests also welcome but please submit an issue first on what you'd like to change.
I promise I'll answer as fast as I can.Please take a look at the TODO's in the project: Ctrl+F `TODO`
## References
Inspired by [CodeBullets amazing video](https://www.youtube.com/watch?v=BOZfhUcNiqk) on the subject.## Logo work
Gopher rendition by [Juliette Whittingslow](https://www.instagram.com/artewitty/).
Gopher design authored by [Renée French](https://www.instagram.com/reneefrench)
is licensed by the Creative Commons Attribution 3.0 licensed.