https://github.com/spatstat/spatstat.random
  
  
    Sub-package of spatstat containing functions for random generation 
    https://github.com/spatstat/spatstat.random
  
point-processes random-generation simulation spatial-sampling spatial-simulation
        Last synced: 13 days ago 
        JSON representation
    
Sub-package of spatstat containing functions for random generation
- Host: GitHub
 - URL: https://github.com/spatstat/spatstat.random
 - Owner: spatstat
 - Created: 2022-01-03T11:22:27.000Z (almost 4 years ago)
 - Default Branch: main
 - Last Pushed: 2025-10-09T15:00:12.000Z (26 days ago)
 - Last Synced: 2025-10-21T20:57:23.535Z (13 days ago)
 - Topics: point-processes, random-generation, simulation, spatial-sampling, spatial-simulation
 - Language: R
 - Homepage:
 - Size: 866 KB
 - Stars: 5
 - Watchers: 3
 - Forks: 2
 - Open Issues: 0
 - 
            Metadata Files:
            
- Readme: README.md
 - Changelog: NEWS
 
 
Awesome Lists containing this project
README
          # spatstat.random
## Random Generation and Simulation for the spatstat family
[](http://CRAN.R-project.org/package=spatstat.random) 
[](https://github.com/spatstat/spatstat.random)
The original `spatstat` package has been split into
several sub-packages.
This package `spatstat.random` is one of these packages.
It contains the functions for
- generating random spatial patterns of points according to many simple rules
(complete spatial randomness, binomial process, random grid,
systematic random, stratified random, 
simple sequential inhibition, cell process),
- randomised alteration of patterns (thinning,
random shift, jittering),
- generating simulated realisations of spatial point processes
(Poisson processes, Matern inhibition models, Matern cluster processes,
Neyman-Scott cluster processes, log-Gaussian Cox processes,
product shot noise cluster processes, Gibbs point processes)
- generating simulated realisations of Gibbs point processes
(Metropolis-Hastings birth-death-shift algorithm;
perfect simulation/ dominated coupling from the past;
alternating Gibbs sampler)
- generating random spatial patterns of line segments
- generating random tessellations
- generating random images (random noise, random mosaics).
Exceptions:
- generation of determinantal point processes is provided in `spatstat.model`
- generation of quasi-random patterns is provided in `spatstat.geom`
The reorganisation of `spatstat` into a family of packages is described
on the GitHub repository
[spatstat/spatstat](https://github.com/spatstat/spatstat).