https://github.com/speedcell4/torchlatent
High Performance Structured Prediction in PyTorch
https://github.com/speedcell4/torchlatent
conditional-random-fields deep-learning latent-structures matrix-tree-theorem probabilistic-graphical-models pytorch
Last synced: 3 months ago
JSON representation
High Performance Structured Prediction in PyTorch
- Host: GitHub
- URL: https://github.com/speedcell4/torchlatent
- Owner: speedcell4
- License: mit
- Created: 2020-03-01T08:24:23.000Z (about 5 years ago)
- Default Branch: develop
- Last Pushed: 2024-03-14T15:08:52.000Z (about 1 year ago)
- Last Synced: 2024-04-26T07:01:22.909Z (about 1 year ago)
- Topics: conditional-random-fields, deep-learning, latent-structures, matrix-tree-theorem, probabilistic-graphical-models, pytorch
- Language: Python
- Homepage:
- Size: 253 KB
- Stars: 6
- Watchers: 5
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# TorchLatent


## Installation
`python -m pip torchlatent`
## Latent Structures
- [x] Conditional Random Fields (CRF)
- [x] Cocke–Kasami-Younger Algorithm (CKY)
- [ ] Probabilistic Context-free Grammars (CFG)
- [ ] Connectionist Temporal Classification (CTC)
- [ ] Recurrent Neural Network Grammars (RNNG)
- [ ] Non-Projective Dependency Tree (Matrix-tree Theorem)
- [ ] Dependency Model with Valence (DMV)
- [ ] Autoregressive Decoding (Beam Search)