Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/speediedan/finetuning-scheduler

A PyTorch Lightning extension that accelerates and enhances foundation model experimentation with flexible fine-tuning schedules.
https://github.com/speediedan/finetuning-scheduler

artificial-intelligence fine-tuning finetuning machine-learning neural-networks pytorch pytorch-lightning superglue transfer-learning

Last synced: 3 months ago
JSON representation

A PyTorch Lightning extension that accelerates and enhances foundation model experimentation with flexible fine-tuning schedules.

Awesome Lists containing this project

README

        

**A PyTorch Lightning extension that enhances model experimentation with flexible fine-tuning schedules.**

______________________________________________________________________


Docs
Setup
Examples
Community

[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/finetuning-scheduler)](https://pypi.org/project/finetuning-scheduler/)
[![PyPI Status](https://badge.fury.io/py/finetuning-scheduler.svg)](https://badge.fury.io/py/finetuning-scheduler)\
[![codecov](https://codecov.io/gh/speediedan/finetuning-scheduler/branch/main/graph/badge.svg?flag=gpu)](https://codecov.io/gh/speediedan/finetuning-scheduler)
[![ReadTheDocs](https://readthedocs.org/projects/finetuning-scheduler/badge/?version=latest)](https://finetuning-scheduler.readthedocs.io/en/stable/)
[![DOI](https://zenodo.org/badge/455666112.svg)](https://zenodo.org/badge/latestdoi/455666112)
[![license](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://github.com/speediedan/finetuning-scheduler/blob/master/LICENSE)

______________________________________________________________________

FinetuningScheduler explicit loss animation

[FinetuningScheduler](https://finetuning-scheduler.readthedocs.io/en/stable/api/finetuning_scheduler.fts.html#finetuning_scheduler.fts.FinetuningScheduler) is simple to use yet powerful, offering a number of features that facilitate model research and exploration:

- easy specification of flexible fine-tuning schedules with explicit or regex-based parameter selection
- implicit schedules for initial/naive model exploration
- explicit schedules for performance tuning, fine-grained behavioral experimentation and computational efficiency
- automatic restoration of best per-phase checkpoints driven by iterative application of early-stopping criteria to each fine-tuning phase
- composition of early-stopping and manually-set epoch-driven fine-tuning phase transitions

______________________________________________________________________

## Setup

### Step 0: Install from PyPI

```bash
pip install finetuning-scheduler
```

Additional installation options

#### *Install Optional Packages*

#### To install additional packages required for examples:

```bash
pip install finetuning-scheduler['examples']
```

#### or to include packages for examples, development and testing:

```bash
pip install finetuning-scheduler['all']
```

#### *Source Installation Examples*

#### To install from (editable) source (includes docs as well):

```bash
git clone https://github.com/speediedan/finetuning-scheduler.git
cd finetuning-scheduler
python -m pip install -e ".[all]" -r requirements/docs.txt
```

#### Install a specific FTS version from source using the standalone `pytorch-lighting` package:

```bash
export FTS_VERSION=2.0.0
export PACKAGE_NAME=pytorch
git clone -b v${FTS_VERSION} https://github.com/speediedan/finetuning-scheduler
cd finetuning-scheduler
python -m pip install -e ".[all]" -r requirements/docs.txt
```

#### *Latest Docker Image*

Note, publishing of new `finetuning-scheduler` version-specific docker images was paused after the `2.0.2` patch release. If new version-specific images are required, please raise an issue.

![Docker Image Version (tag latest semver)](https://img.shields.io/docker/v/speediedan/finetuning-scheduler/latest?color=%23000080&label=docker)

### Step 1: Import the FinetuningScheduler callback and start fine-tuning!

```python
import lightning as L
from finetuning_scheduler import FinetuningScheduler

trainer = L.Trainer(callbacks=[FinetuningScheduler()])
```

Get started by following [the Fine-Tuning Scheduler introduction](https://finetuning-scheduler.readthedocs.io/en/stable/index.html) which includes a [CLI-based example](https://finetuning-scheduler.readthedocs.io/en/stable/index.html#example-scheduled-fine-tuning-for-superglue) or by following the [notebook-based](https://pytorch-lightning.readthedocs.io/en/stable/notebooks/lightning_examples/finetuning-scheduler.html) Fine-Tuning Scheduler tutorial.

______________________________________________________________________

### Installation Using the Standalone `pytorch-lightning` Package

*applicable to versions >= `2.0.0`*

Now that the core Lightning package is `lightning` rather than `pytorch-lightning`, Fine-Tuning Scheduler (FTS) by default depends upon the `lightning` package rather than the standalone `pytorch-lightning`. If you would like to continue to use FTS with the standalone `pytorch-lightning` package instead, you can still do so as follows:

Install a given FTS release (for example v2.0.0) using standalone `pytorch-lightning`:

```bash
export FTS_VERSION=2.0.0
export PACKAGE_NAME=pytorch
wget https://github.com/speediedan/finetuning-scheduler/releases/download/v${FTS_VERSION}/finetuning-scheduler-${FTS_VERSION}.tar.gz
pip install finetuning-scheduler-${FTS_VERSION}.tar.gz
```

______________________________________________________________________

## Examples

### Scheduled Fine-Tuning For SuperGLUE

- [Notebook-based Tutorial](https://pytorch-lightning.readthedocs.io/en/stable/notebooks/lightning_examples/finetuning-scheduler.html)
- [CLI-based Tutorial](https://finetuning-scheduler.readthedocs.io/en/stable/#example-scheduled-fine-tuning-for-superglue)
- [FSDP Scheduled Fine-Tuning](https://finetuning-scheduler.readthedocs.io/en/stable/advanced/fsdp_scheduled_fine_tuning.html)
- [LR Scheduler Reinitialization](https://finetuning-scheduler.readthedocs.io/en/stable/advanced/lr_scheduler_reinitialization.html) (advanced)
- [Optimizer Reinitialization](https://finetuning-scheduler.readthedocs.io/en/stable/advanced/optimizer_reinitialization.html) (advanced)

______________________________________________________________________

## Continuous Integration

Fine-Tuning Scheduler is rigorously tested across multiple CPUs, GPUs and against major Python and PyTorch versions. Each Fine-Tuning Scheduler minor release (major.minor.patch) is paired with a Lightning minor release (e.g. Fine-Tuning Scheduler 2.0 depends upon Lightning 2.0).

To ensure maximum stability, the latest Lightning patch release fully tested with Fine-Tuning Scheduler is set as a maximum dependency in Fine-Tuning Scheduler's requirements.txt (e.g. \<= 1.7.1). If you'd like to test a specific Lightning patch version greater than that currently in Fine-Tuning Scheduler's requirements.txt, it will likely work but you should install Fine-Tuning Scheduler from source and update the requirements.txt as desired.

Current build statuses for Fine-Tuning Scheduler

| System / (PyTorch/Python ver) | 2.1.2/3.9 | 2.4.0/3.9, 2.4.0/3.12 |
| :---------------------------: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| Linux \[GPUs\*\*\] | - | [![Build Status](https://dev.azure.com//speediedan/finetuning-scheduler/_apis/build/status/Multi-GPU%20&%20Example%20Tests?branchName=main)](https://dev.azure.com/speediedan/finetuning-scheduler/_build/latest?definitionId=1&branchName=main) |
| Linux (Ubuntu 22.04) | [![Test](https://github.com/speediedan/finetuning-scheduler/actions/workflows/ci_test-full.yml/badge.svg?branch=main&event=push)](https://github.com/speediedan/finetuning-scheduler/actions/workflows/ci_test-full.yml) | [![Test](https://github.com/speediedan/finetuning-scheduler/actions/workflows/ci_test-full.yml/badge.svg?branch=main&event=push)](https://github.com/speediedan/finetuning-scheduler/actions/workflows/ci_test-full.yml) |
| OSX (11) | [![Test](https://github.com/speediedan/finetuning-scheduler/actions/workflows/ci_test-full.yml/badge.svg?branch=main&event=push)](https://github.com/speediedan/finetuning-scheduler/actions/workflows/ci_test-full.yml) | [![Test](https://github.com/speediedan/finetuning-scheduler/actions/workflows/ci_test-full.yml/badge.svg?branch=main&event=push)](https://github.com/speediedan/finetuning-scheduler/actions/workflows/ci_test-full.yml) |
| Windows (2022) | [![Test](https://github.com/speediedan/finetuning-scheduler/actions/workflows/ci_test-full.yml/badge.svg?branch=main&event=push)](https://github.com/speediedan/finetuning-scheduler/actions/workflows/ci_test-full.yml) | [![Test](https://github.com/speediedan/finetuning-scheduler/actions/workflows/ci_test-full.yml/badge.svg?branch=main&event=push)](https://github.com/speediedan/finetuning-scheduler/actions/workflows/ci_test-full.yml) |

- \*\* tests run on one RTX 4090 and one RTX 2070

## Community

Fine-Tuning Scheduler is developed and maintained by the community in close communication with the [Lightning team](https://pytorch-lightning.readthedocs.io/en/stable/governance.html). Thanks to everyone in the community for their tireless effort building and improving the immensely useful core Lightning project.

PR's welcome! Please see the [contributing guidelines](https://finetuning-scheduler.readthedocs.io/en/stable/generated/CONTRIBUTING.html) (which are essentially the same as Lightning's).

______________________________________________________________________

## Citing Fine-Tuning Scheduler

Please cite:

```tex
@misc{Dan_Dale_2022_6463952,
author = {Dan Dale},
title = {{Fine-Tuning Scheduler}},
month = Feb,
year = 2022,
doi = {10.5281/zenodo.6463952},
publisher = {Zenodo},
url = {https://zenodo.org/record/6463952}
}
```

Feel free to star the repo as well if you find it useful or interesting. Thanks 😊!