Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/spratiher9/netplot

A ultra-lightweight 3D renderer of the Tensorflow/Keras neural network architectures
https://github.com/spratiher9/netplot

keras python visualization

Last synced: 3 months ago
JSON representation

A ultra-lightweight 3D renderer of the Tensorflow/Keras neural network architectures

Awesome Lists containing this project

README

        

![NETPLOT](https://github.com/Spratiher9/Netplot/blob/5a7b0807114bd858deeb99e17c893b749ab95b93/Netplot.png)
## NetplotπŸš€ [![Downloads](https://static.pepy.tech/personalized-badge/netplot?period=total&units=international_system&left_color=black&right_color=orange&left_text=PYPI%20Downloads)](https://pepy.tech/project/netplot)
A ultra-lightweight 3D renderer of the Tensorflow/Keras neural network architectures.
This Library is working on Matplotlib visualization for now. In future the visualization can be moved to plotly
for a more interactive visual of the neural network architecture.

**Note:** *For now the rendering is working in Jupyter only Google Colab support is in works.*

For more details visit [NetPlot](https://pypi.org/project/netplot/0.1.2/)

### How to use it

![NetPLOT DEMO Notebook](https://github.com/Spratiher9/Netplot/blob/1e16251651d4c947c7a33fd7bac2f7701d7d162b/NetPLOT_demo.gif)

### Install with Pip

```python
pip install netplot
```

### Notebook Codelets

```python
from netplot import ModelPlot
import tensorflow as tf
import numpy as np
```

```python
%matplotlib notebook
```

```python
X_input = tf.keras.layers.Input(shape=(32,32,3))
X = tf.keras.layers.Conv2D(4, 3, activation='relu')(X_input)
X = tf.keras.layers.MaxPool2D(2,2)(X)
X = tf.keras.layers.Conv2D(16, 3, activation='relu')(X)
X = tf.keras.layers.MaxPool2D(2,2)(X)
X = tf.keras.layers.Conv2D(8, 3, activation='relu')(X)
X = tf.keras.layers.MaxPool2D(2,2)(X)
X = tf.keras.layers.Flatten()(X)
X = tf.keras.layers.Dense(10, activation='relu')(X)
X = tf.keras.layers.Dense(2, activation='softmax')(X)

model = tf.keras.models.Model(inputs=X_input, outputs=X)
```
```python
modelplot = ModelPlot(model=model, grid=True, connection=True, linewidth=0.1)
modelplot.show()
```
![Keras Model Summarized](https://github.com/Spratiher9/Netplot/blob/master/screenshot%20demo/model_summary.png)
![Keras Model Visualized](https://github.com/Spratiher9/Netplot/blob/master/screenshot%20demo/ModelPlot%203D%20with%20grid.png)