Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/spsanderson/TidyDensity

Create tidy probability/density tibbles and plots of randomly generated and empirical data.
https://github.com/spsanderson/TidyDensity

bootstrap density distributions ggplot2 probability r r-language r-package r-stats simulation statistics tibble tidy

Last synced: 9 days ago
JSON representation

Create tidy probability/density tibbles and plots of randomly generated and empirical data.

Awesome Lists containing this project

README

        

---
output: github_document
---

```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%",
message = FALSE,
warning = FALSE
)
```

# TidyDensity

[![CRAN_Status_Badge](http://www.r-pkg.org/badges/version/TidyDensity)](https://cran.r-project.org/package=TidyDensity)
![](https://cranlogs.r-pkg.org/badges/TidyDensity)
![](https://cranlogs.r-pkg.org/badges/grand-total/TidyDensity)
[![Lifecycle: stable](https://img.shields.io/badge/lifecycle-stable-brightgreen.svg)](https://lifecycle.r-lib.org/articles/stages.html##stable)
[![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square)](https://makeapullrequest.com)

The goal of `{TidyDensity}` is to make working with random numbers from different
distributions easy. All `tidy_` distribution functions provide the following
components:

- [`r_`]
- [`d_`]
- [`q_`]
- [`p_`]

## Installation

You can install the released version of `{TidyDensity}` from [CRAN](https://CRAN.R-project.org) with:

``` r
install.packages("TidyDensity")
```

And the development version from [GitHub](https://github.com/) with:

``` r
# install.packages("devtools")
devtools::install_github("spsanderson/TidyDensity")
```

## Example

This is a basic example which shows you how to solve a common problem:

```{r example}
library(TidyDensity)
library(dplyr)
library(ggplot2)

tidy_normal()
```

An example plot of the `tidy_normal` data.

```{r plot_density}
tn <- tidy_normal(.n = 100, .num_sims = 6)

tidy_autoplot(tn, .plot_type = "density")
tidy_autoplot(tn, .plot_type = "quantile")
tidy_autoplot(tn, .plot_type = "probability")
tidy_autoplot(tn, .plot_type = "qq")
```

We can also take a look at the plots when the number of simulations is greater than
nine. This will automatically turn off the legend as it will become too noisy.

```{r more_than_nine_simulations}
tn <- tidy_normal(.n = 100, .num_sims = 20)

tidy_autoplot(tn, .plot_type = "density")
tidy_autoplot(tn, .plot_type = "quantile")
tidy_autoplot(tn, .plot_type = "probability")
tidy_autoplot(tn, .plot_type = "qq")
```