Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/spsanderson/healthyverse_tsa

A Time Series Analysis of the healthyverse R pacakges
https://github.com/spsanderson/healthyverse_tsa

ai data-analysis data-analytics data-science forecast-on-demand forecasting forecasting-models ml r time-series time-series-analysis

Last synced: 2 months ago
JSON representation

A Time Series Analysis of the healthyverse R pacakges

Awesome Lists containing this project

README

        

---
title: "Time Series Analysis and Nested Modeling of the Healthyverse Packages"
output: github_document
always_allow_html: true
author: "Steven P. Sanderson II, MPH - Date: "
date: "`r format(Sys.time(), '%d %B, %Y')`"
---

```{r setup, include=FALSE}
knitr::opts_chunk$set(
echo = TRUE,
message = FALSE,
warning = FALSE,
fig.path = "man/figures/README-",
fig.width = 12,
fig.height = 10
)
source("00_scripts/load_libraries.R")
source("00_scripts/get_data_functions.R")
source("00_scripts/helper_functions.R")
source("00_scripts/data_manipulation_functions.R")
source("00_scripts/ts_decomp.R")

n_cores = 7
```

This analysis follows a _Nested Modeltime Workflow_.

## Get Data

```{r get_data, echo=FALSE}
get_cran_data()
get_package_release_data()
csv_to_rds()
downloads_tbl <- downloads_processed_tbl()
pkg_tbl <- readRDS("01_data/pkg_release_tbl.rds") %>%
mutate(date = as.Date(date))
```

```{r glimpse_data}
glimpse(downloads_tbl)
```

The last day in the data set is `r max_cran_datetime()`, the file was birthed on:
`r dl_birth_datetime()`, and at report knit time is `r hours_since_cran_log_update()`
hours old. `r update_log_message()`

Now that we have our data lets take a look at it using the `skimr` package.

```{r skim_data}
skim(downloads_tbl)
```

We can see that the following columns are missing a lot of data and for us are most
likely not useful anyways, so we will drop them `c(r_version, r_arch, r_os)`

```{r data_trimmed, echo=FALSE}
data_tbl <- downloads_tbl %>%
select(-r_version, -r_arch, -r_os)
```

## Plots

Now lets take a look at a time-series plot of the total daily downloads by package.
We will use a log scale and place a vertical line at each version release for each
package.

```{r initial_ts_plot, echo=FALSE}
md <- ts_downloads_tbl(data_tbl, "day", package) %>%
ungroup() %>%
select(date) %>%
distinct() %>%
filter(date == max(date)) %>%
pull(date)

last_values <- ts_downloads_tbl(data_tbl, "day", package) %>%
ungroup() %>%
filter(date == md)

ts_downloads_tbl(
.data = data_tbl,
.by_time = "day",
package
) %>%
filter(date >= subtract_time(md, "1 year")) %>%
ggplot(aes(date, log1p(value))) +
theme_bw() +
geom_point(aes(group = package, color = package), size = 1) +
ggtitle(paste("Package Downloads: {healthyverse}")) +
geom_smooth(method = "loess", color = "black", se = FALSE) +
geom_vline(
data = pkg_tbl
, aes(xintercept = as.numeric(date))
, color = "red"
, lwd = 1
, lty = "solid"
) +
geom_point(
shape = 21, size = 5, color = "red",
data = last_values,
mapping = aes(x = date, y = log1p(value))
) +
facet_wrap(package ~., ncol = 2, scales = "free_x") +
theme_minimal() +
labs(
subtitle = "Vertical lines represent release dates",
x = "Date",
y = "log1p(Counts)",
color = "Package"
) +
theme(legend.position = "bottom")

ts_downloads_tbl(
.data = data_tbl,
.by_time = "day"
) %>%
select(date, value) %>%
summarise_by_time(
.date_var = date,
.by = "day",
Actual = (sum(value, na.rm = TRUE))
) %>%
mutate(Actual = cumsum(Actual)) %>%
tk_augment_differences(.value = Actual, .lags = c(1, 2)) %>%
rename(velocity = contains("_lag1")) %>%
rename(acceleration = contains("_lag2")) %>%
pivot_longer(-date) %>%
filter(date >= subtract_time(md, "1 year")) %>%
mutate(name = str_to_title(name)) %>%
mutate(name = as_factor(name)) %>%
ggplot(aes(x = date, y = value, group = name)) +
geom_point(alpha = .2) +
geom_line() +
geom_vline(
data = pkg_tbl
, aes(xintercept = date, color = package)
, lwd = 1
, lty = "solid"
) +
facet_wrap(name ~ ., ncol = 1, scale = "free") +
theme_minimal() +
labs(
title = "Total Downloads: Trend, Velocity, and Accelertion",
subtitle = "Vertical Lines Indicate a CRAN Release date for a package.",
x = "Date",
y = "Values",
color = ""
) +
theme(legend.position = "bottom")
```

Now lets take a look at some time series decomposition graphs.

```{r ts_decomp_plt, echo=FALSE}
plot_stl_diagnostics(
.data = ts_downloads_tbl(
.data = data_tbl,
.by_time = "day"
) %>%
filter(date >= subtract_time(md, "1 year")),
.date_var = date,
.value = log1p(value),
.interactive = FALSE
) +
labs(
title = "STL Diagnositcs: log1p(Values) - Daily Aggregation"
) +
theme_minimal()

plot_stl_diagnostics(
.data = ts_downloads_tbl(
.data = data_tbl,
.by_time = "month"
) %>%
filter(date >= subtract_time(md, "1 year")),
.date_var = date,
.value = log1p(value),
.interactive = FALSE
) +
labs(
title = "STL Diagnositcs: log1p(Values) - Monthly Aggregation"
) +
theme_minimal()

plot_seasonal_diagnostics(
.data = ts_downloads_tbl(
.data = data_tbl,
.by_time = "day"
) %>%
filter(date >= subtract_time(md, "1 year")),
.date_var = date,
.value = log1p(value),
.interactive = FALSE
) +
labs(
title = "Seasonal Diagnostics: log1p(Values)"
) +
theme_minimal()

plot_acf_diagnostics(
.data = ts_downloads_tbl(
.data = data_tbl,
.by_time = "day"
) %>%
filter(date >= subtract_time(md, "1 year")),
.date_var = date,
.value = log1p(value),
.interactive = FALSE
) +
labs(
title = "Lag Diagnostics: log1p(Values)"
) +
theme_minimal()
```

## Feature Engineering

Now that we have our basic data and a shot of what it looks like, let's add some
features to our data which can be very helpful in modeling. Lets start by making
a `tibble` that is aggregated by the day and package, as we are going to be interested
in forecasting the next 4 weeks or 28 days for each package. First lets get our base data.

```{r base_data_frame, echo=FALSE}
ts_downloads_tbl(data_tbl) |>
plot_time_series_regression(
date,
(value) ~ date + lag(value, 1) + lag(value, 7) + lag(value, 14)
+ lag(value, 21) + lag(value, 28) + lag(value, 35)
+ lag(value, 42) + lag(value, 49) + month(date, label = TRUE)
+ fourier_vec(date, type = "sin", K = 1, period = 7)
+ fourier_vec(date, type = "cos", K = 1, period = 7),
.show_summary = TRUE
)

base_data <- ts_downloads_tbl(
.data = data_tbl,
.by_time = "day",
package
) %>%
filter(date >= subtract_time(date, "18 months")) %>%
mutate(package = factor(package)) %>%
select(package, date, value)
```

Now we are going to do some basic pre-processing.

```{r preprocess, message=FALSE}
data_padded_tbl <- base_data %>%
pad_by_time(
.date_var = date,
.pad_value = 0
)

# Get log interval and standardization parameters
log_params <- liv(data_padded_tbl$value, limit_lower = 0, offset = 1, silent = TRUE)
limit_lower <- log_params$limit_lower
limit_upper <- log_params$limit_upper
offset <- log_params$offset

data_liv_tbl <- data_padded_tbl %>%
# Get log interval transform
mutate(value_trans = liv(value, limit_lower = 0, offset = 1, silent = TRUE)$log_scaled)

# Get Standardization Params
std_params <- standard_vec(data_liv_tbl$value_trans, silent = TRUE)
std_mean <- std_params$mean
std_sd <- std_params$sd

data_transformed_tbl <- data_liv_tbl %>%
# get standardization
mutate(value_trans = standard_vec(value_trans, silent = TRUE)$standard_scaled) %>%
select(-value)
```

Since this is panel data we can follow one of two different modeling strategies.
We can search for a global model in the panel data or we can use nested forecasting
finding the best model for each of the time series. Since we only have 5 panels, we
will use nested forecasting.

To do this we will use the `nest_timeseries` and `split_nested_timeseries` functions
to create a nested `tibble`.

```{r nested_data}
horizon <- 4*7

nested_data_tbl <- data_transformed_tbl %>%

# 1. Extending: We'll predict n days into the future.
extend_timeseries(
.id_var = package,
.date_var = date,
.length_future = horizon
) %>%

# 2. Nesting: We'll group by id, and create a future dataset
# that forecasts n days of extended data and
# an actual dataset that contains n*2 days
nest_timeseries(
.id_var = package,
.length_future = horizon
#.length_actual = horizon*2
) %>%

# 3. Splitting: We'll take the actual data and create splits
# for accuracy and confidence interval estimation of n das (test)
# and the rest is training data
split_nested_timeseries(
.length_test = horizon
)

nested_data_tbl
```

Now it is time to make some recipes and models using the modeltime workflow.

## Modeltime Workflow

### Recipe Object

```{r rec_obj}
recipe_base <- recipe(
value_trans ~ date
, data = extract_nested_test_split(nested_data_tbl)
)

recipe_base

recipe_date <- recipe_base %>%
step_mutate(date = as.numeric(date))

```

### Models
```{r time_series_models}
# Models ------------------------------------------------------------------

# Auto ARIMA --------------------------------------------------------------

model_spec_arima_no_boost <- arima_reg() %>%
set_engine(engine = "auto_arima")

wflw_auto_arima <- workflow() %>%
add_recipe(recipe = recipe_base) %>%
add_model(model_spec_arima_no_boost)

# NNETAR ------------------------------------------------------------------

model_spec_nnetar <- nnetar_reg(
mode = "regression"
, seasonal_period = "auto"
) %>%
set_engine("nnetar")

wflw_nnetar <- workflow() %>%
add_recipe(recipe = recipe_base) %>%
add_model(model_spec_nnetar)

# TSLM --------------------------------------------------------------------

model_spec_lm <- linear_reg() %>%
set_engine("lm")

wflw_lm <- workflow() %>%
add_recipe(recipe = recipe_base) %>%
add_model(model_spec_lm)

# MARS --------------------------------------------------------------------

model_spec_mars <- mars(mode = "regression") %>%
set_engine("earth")

wflw_mars <- workflow() %>%
add_recipe(recipe = recipe_base) %>%
add_model(model_spec_mars)

```

### Nested Modeltime Tables
```{r nested_modeltime_tables}
nested_modeltime_tbl <- modeltime_nested_fit(
# Nested Data
nested_data = nested_data_tbl,
control = control_nested_fit(
verbose = TRUE,
allow_par = FALSE
),
# Add workflows
wflw_auto_arima,
wflw_lm,
wflw_mars,
wflw_nnetar
)

nested_modeltime_tbl <- nested_modeltime_tbl[!is.na(nested_modeltime_tbl$package),]
```

### Model Accuracy
```{r accuracy}
nested_modeltime_tbl %>%
extract_nested_test_accuracy() %>%
knitr::kable()
```

### Plot Models
```{r model_plot}
nested_modeltime_tbl %>%
extract_nested_test_forecast() %>%
group_by(package) %>%
plot_modeltime_forecast(
.interactive = FALSE,
.conf_interval_show = FALSE,
.facet_scales = "free"
) +
theme_minimal() +
theme(legend.position = "bottom")
```

### Best Model
```{r best_model}
best_nested_modeltime_tbl <- nested_modeltime_tbl %>%
modeltime_nested_select_best(
metric = "rmse",
minimize = TRUE,
filter_test_forecasts = TRUE
)

best_nested_modeltime_tbl %>%
extract_nested_best_model_report()

best_nested_modeltime_tbl %>%
extract_nested_test_forecast() %>%
#filter(!is.na(.model_id)) %>%
group_by(package) %>%
plot_modeltime_forecast(
.interactive = FALSE,
.conf_interval_alpha = 0.2,
.facet_scales = "free"
) +
theme_minimal() +
theme(legend.position = "bottom")
```

## Refitting and Future Forecast

Now that we have the best models, we can make our future forecasts.

```{r refit}

nested_modeltime_refit_tbl <- best_nested_modeltime_tbl %>%
modeltime_nested_refit(
control = control_nested_refit(verbose = TRUE)
)

nested_modeltime_refit_tbl

nested_modeltime_refit_tbl %>%
extract_nested_future_forecast() %>%
mutate(across(.value:.conf_hi, .fns = ~ standard_inv_vec(
x = .,
mean = std_mean,
sd = std_sd
)$standard_inverse_value)) %>%
mutate(across(.value:.conf_hi, .fns = ~ liiv(
x = .,
limit_lower = limit_lower,
limit_upper = limit_upper,
offset = offset
)$rescaled_v)) %>%
group_by(package) %>%
plot_modeltime_forecast(
.interactive = FALSE,
.conf_interval_alpha = 0.2,
.facet_scales = "free"
) +
theme_minimal() +
theme(legend.position = "bottom")
```