Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/spytensor/prepare_detection_dataset

convert dataset to coco/voc format
https://github.com/spytensor/prepare_detection_dataset

coco csv detection labelme voc

Last synced: 5 days ago
JSON representation

convert dataset to coco/voc format

Awesome Lists containing this project

README

        

**背景**

万事开头难。之前写图像识别的博客教程,也是为了方便那些学了很多理论知识,却对实际项目无从下手的小伙伴,后来转到目标检测来了,师从烨兄、亚光兄,从他们那学了不少检测的知识和操作,今天也终于闲下了,准备写个检测系列的总结。一方面分享知识希望可以一起学习,另一方面让一部分人少走弯路,快速上路(入坑)。

此部分代码:[Github](https://github.com/spytensor/prepare_detection_dataset)
博客地址: [目标检测系列一:如何制作数据集?](http://www.spytensor.com/index.php/archives/48/)

**更新**

- (28/03/2019)
- 新增 `csv2labelme`

1. 内容介绍

系列一主要介绍如何在常见的几种数据格式之间进行转换,以及万能中介`csv`格式的使用,这里列出以下几个:

- csv to coco
- csv to voc
- labelme to coco
- labelme to voc
- csv to json

2. 标准格式

在使用转换脚本之前,必须要明确的几种格式

2.1 csv

不要一看是`csv`文件就直接拿来运行,如果不是,可以自行修改代码,或者修改标注文件。

转换脚本支持的csv格式应为以下形式:

- `csv/`
- `labels.csv`
- `images/`
- `image1.jpg`
- `image2.jpg`
- `...`

`labels.csv` 的形式:

`/path/to/image,xmin,ymin,xmax,ymax,label`

例如:

```
/mfs/dataset/face/0d4c5e4f-fc3c-4d5a-906c-105.jpg,450,154,754,341,face
/mfs/dataset/face/0ddfc5aea-fcdac-421-92dad-144.jpg,143,154,344,341,face
...
```
注:图片路径请使用绝对路径

2.2 voc

标准的voc数据格式如下:

- `VOC2007/`
- `Annotations/`
- `0d4c5e4f-fc3c-4d5a-906c-105.xml`
- `0ddfc5aea-fcdac-421-92dad-144/xml`
- `...`
- `ImageSets/`
- `Main/`
- `train.txt`
- `test.txt`
- `val.txt`
- `trainval.txt`
- `JPEGImages/`
- `0d4c5e4f-fc3c-4d5a-906c-105.jpg`
- `0ddfc5aea-fcdac-421-92dad-144.jpg`
- `...`

2.3 coco

此处未使用测试集

- `coco/`
- `annotations/`
- `instances_train2017.json`
- `instances_val2017.json`
- `images/`
- `train2017/`
- `0d4c5e4f-fc3c-4d5a-906c-105.jpg`
- `...`
- `val2017`
- `0ddfc5aea-fcdac-421-92dad-144.jpg`
- `...`

2.4 labelme

- `labelme/`
- `0d4c5e4f-fc3c-4d5a-906c-105.json`
- `0d4c5e4f-fc3c-4d5a-906c-105.jpg`
- `0ddfc5aea-fcdac-421-92dad-144.json`
- `0ddfc5aea-fcdac-421-92dad-144.jpg`

Json file 格式:
(imageData那一块太长了,不展示了)

```json
{
"version": "3.6.16",
"flags": {},
"shapes": [
{
"label": "helmet",
"line_color": null,
"fill_color": null,
"points": [
[
131,
269
],
[
388,
457
]
],
"shape_type": "rectangle"
}
],
"lineColor": [
0,
255,
0,
128
],
"fillColor": [
255,
0,
0,
128
],
"imagePath": "004ffe6f-c3e2-3602-84a1-ecd5f437b113.jpg",
"imageData": "" # too long ,so not show here
"imageHeight": 1080,
"imageWidth": 1920
}
```

3. 如何使用转换脚本

3.1 csv2coco

首先更改`csv2coco.py`中以下几个配置

```
classname_to_id = {"person": 1} # for your dataset classes
csv_file = "labels.csv" # annatations file path
image_dir = "images/" # original image path
saved_coco_path = "./" # path to save converted coco dataset
```

然后运行 `python csv2coco.py`

会自动创建文件夹并复制图片到相应位置,运行结束后得到如下:

- `coco/`
- `annotations/`
- `instances_train2017.json`
- `instances_val2017.json`
- `images/`
- `train2017/`
- `0d4c5e4f-fc3c-4d5a-906c-105.jpg`
- `...`
- `val2017`
- `0ddfc5aea-fcdac-421-92dad-144.jpg`
- `...`

3.2 csv2voc

首先更改`csv2voc.py`中以下几个配置

```
csv_file = "labels.csv"
saved_path = ".VOC2007/" # path to save converted voc dataset
image_save_path = "./JPEGImages/" # converted voc images path
image_raw_parh = "images/" # original image path
```

然后运行 `python csv2voc.py`

同样会自动创建文件夹并复制图片到相应位置,运行结束后得到如下:

- `VOC2007/`
- `Annotations/`
- `0d4c5e4f-fc3c-4d5a-906c-105.xml`
- `0ddfc5aea-fcdac-421-92dad-144/xml`
- `...`
- `ImageSets/`
- `Main/`
- `train.txt`
- `test.txt`
- `val.txt`
- `trainval.txt`
- `JPEGImages/`
- `0d4c5e4f-fc3c-4d5a-906c-105.jpg`
- `0ddfc5aea-fcdac-421-92dad-144.jpg`
- `...`

3.3 labelme2coco

首先更改`labelme2coco.py`中以下几个配置

```
classname_to_id = {"person": 1} # for your dataset classes
labelme_path = "labelme/" # path for labelme dataset
saved_coco_path = "./" # path for saved coco dataset
```
然后运行 `python labelme2coco.py`,生成文件形式同`csv2coco`

3.4 labelme2voc

首先更改`labelme2voc.py`中以下几个配置

```
labelme_path = "labelme/" # path for labelme dataset
saved_coco_path = "./" # path for saved coco dataset
```
然后运行 `python labelme2voc.py`,生成文件形式同`csv2voc`

3.5 csv2labelme

首先更改`csv2labelme.py`中以下几个配置

```
image_path = "./images/" # path for images
csv_file = "./" # path for csv annotations
```
然后运行 `python csv2labelme.py`,生成的`json`文件会保存在`image_path`下,切换路径过去,直接`labelme`便
可以查看标签.

4. 万能中介csv

从上面的转换格式中可以看出,并没有给出如何转到csv的,一是因为太过于简单,而是主流检测框架很少支持这种格式的数据输入。以下给出如何将标注信息写入`csv`

```python
info = [[filename0,"xmin ymin xmax ymax label0"],
filename1,"xmin ymin xmax ymax label1"]
csv_labels = open("csv_labels.csv","w")
for filename,bboxes in info:
bbox = bboxes.split(" ")
label = bbox[-1]
csv_labels.write(filename+","+bbox[0]+","+bbox[1]+","+bbox[2]+","+bbox[3]+","+label+"\n")
csv_labels.close()
```

是不是非常简单。。。如果你不知道如何从原始的标签文件中读取得到标注信息,那没办法了,学学编程吧,23333

### TODO
- 1. [ ] Multiprocessing
## 致谢
感谢这么久以来对本项目支持的各位大佬!

[![Stargazers repo roster for @spytensor/prepare_detection_dataset](https://reporoster.com/stars/spytensor/prepare_detection_dataset)](https://github.com/spytensor/prepare_detection_dataset/stargazers)