Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/sri-csl/trinity-packet
Code for model safeguards for packet-level DNN classifiers
https://github.com/sri-csl/trinity-packet
Last synced: about 2 months ago
JSON representation
Code for model safeguards for packet-level DNN classifiers
- Host: GitHub
- URL: https://github.com/sri-csl/trinity-packet
- Owner: SRI-CSL
- License: mit
- Created: 2023-12-01T20:36:14.000Z (about 1 year ago)
- Default Branch: main
- Last Pushed: 2023-12-01T20:39:36.000Z (about 1 year ago)
- Last Synced: 2023-12-01T21:33:59.252Z (about 1 year ago)
- Language: Python
- Size: 0 Bytes
- Stars: 0
- Watchers: 18
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
## Context PCAP
cnn.py: Discriminative CNN model for payload classification.
dataset.py:
ContextPCAPDataset: class for PCAP dataset (CIC, UNSW, etc.). Inherits from data_structures/dataset.py:NetflowDataset.
ContextPCAPTorchDataset: class for PyTorch DataLoader.
experiment.py:
ContextPCAPExperiment: class for experiment (Baseline, OOD, etc.). Inherits from data_structures/dataset.py:NetflowExperiment.
fnn.py: Descriminative FNN model for payload classification.
preproces.py: Functions to transform PCAP + flow files into usable datasets.
transformer.py: Descriminative Transformer model for payload classification.
## Data Structures
dataset.py:
NetflowDataset: parent class for othery types of datasets (ContextPCAP, SequencePCAP, etc.).
experiment.py:
NetflowExperiment: parent class that contains functions for training, inference, OOD experiments.
network_model.py:
NetworkModel: wrapper class for training/inference/feature extraction.
util.py: Miscellaneous parsing functions.
## Detectors
iaf.py:
IAFDataset: A normalizing flows implementation that allows for model distributions.