Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/sriramsk1999/tda-coherence-modeling
https://github.com/sriramsk1999/tda-coherence-modeling
Last synced: 1 day ago
JSON representation
- Host: GitHub
- URL: https://github.com/sriramsk1999/tda-coherence-modeling
- Owner: sriramsk1999
- License: apache-2.0
- Created: 2023-02-18T07:11:47.000Z (over 1 year ago)
- Default Branch: master
- Last Pushed: 2024-04-02T13:40:23.000Z (8 months ago)
- Last Synced: 2024-04-02T14:40:47.878Z (8 months ago)
- Language: Python
- Size: 63.5 KB
- Stars: 0
- Watchers: 1
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Coherence Modeling with TDA
[**Beyond Words: A Topological Exploration of Coherence in Text Documents**](https://openreview.net/forum?id=QJxVhljAyS)
The Second Tiny Papers Track at ICLR 2024
## Setup
```py
conda env create -f environment.yml
conda activate tda-modeling-env
```## Usage
Computing TDA features for a dataset:
```py
python feature_gen.py --cuda 0 --data_name clinton_train --input_dir GCDC_Dataset/ --output_dir gcdc_tda_features --batch_size 100
```Train/test MLP using generated TDA features:
```py
python predict_tda.py --input_dir GCDC_Dataset/ --feat_dir gcdc_tda_features/ --domain clinton
```## Data
- **GCDC** - Refer [GCDC-Corpus](https://github.com/aylai/GCDC-corpus) for the source
## Acknowledgements
We thank the authors of [Artificial Text Detection via Examining the Topology of Attention Maps (EMNLP 2021)](https://github.com/danchern97/tda4atd) for publishing their code.
## Citing
If you find this code useful for your research, please cite the following paper:
```bibtex
@inproceedings{jain2024beyond,
title={Beyond Words: A Topological Exploration of Coherence in Text Documents},
author={Jain, Samyak and Singhal, Rishi and Krishna, Sriram and Singla, Yaman K and Shah, Rajiv Ratn},
booktitle={The Second Tiny Papers Track at ICLR 2024}
}
```