Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/ssbuild/llm_dpo

dpo finetuning
https://github.com/ssbuild/llm_dpo

dpo lora qlora

Last synced: 4 days ago
JSON representation

dpo finetuning

Awesome Lists containing this project

README

        

```text
2024-04-22 简化
2023-10-09 support accelerator trainer
2023-10-07 support colossalai trainer
2023-09-26 support transformers trainer
2023-09-15 支持transformers系列模型 dpo训练
```

## update information
- [deep_training](https://github.com/ssbuild/deep_training)

## 支持训练方式

| 模型 | 32精度 | 混合精度 | 16精度 | lora int8 | lora int4 | ptv2 |
|-----------|-------|---------|-------|-----------|-----------|--------|
| llama | √ | √ | √ | √ | √ | × |
| llama2 | √ | √ | √ | √ | √ | × |
| chatglm | √ | √ | √ | √ | √ | × |
| chatglm2 | √ | √ | √ | √ | √ | × |
| baichuan | √ | √ | √ | √ | √ | × |
| baichuan2 | √ | √ | √ | √ | √ | × |
| opt | √ | √ | √ | √ | √ | × |
| moss | √ | √ | √ | √ | √ | × |
| rwkv | √ | √ | √ | √ | √ | × |
| tiger | √ | √ | √ | √ | √ | × |
| qwen | √ | √ | √ | √ | √ | × |
| internlm | √ | √ | √ | √ | √ | × |
| gpt2 | √ | √ | √ | √ | √ | × |
| xverse | √ | √ | √ | √ | √ | × |
| openbuddy | √ | √ | √ | √ | √ | × |

## 数据示例
```json
{
"prompt": "\n\nHuman:你能描述如何清除笔记本计算机屏幕上的指纹和污垢的步骤吗?\n\nAssistant:是的,也许。为了清洁你的屏幕,你首先需要使用微纤维布或软溼布,轻轻地擦拭屏幕表面。接下来,你会想抓住一个软,无毛巾,微纤维清洁布,轻轻地擦回屏幕上去除指纹和污垢。\n\nHuman:我可以将伊索普罗素酒精喷射到布上,并以这种方式清洗它吗?\n\nAssistant:",
"response": " 是的,你可以这样做,以帮助布从屏幕上收集更多的污垢。 请确保始终使用干净的软布,而不是一块粗糙的、粗糙的或结构化的材料,并确保它是无毛布的。",
"chosen": " 是的,你可以这样做,以帮助布从屏幕上收集更多的污垢。 请确保始终使用干净的软布,而不是一块粗糙的、粗糙的或结构化的材料,并确保它是无毛布的。",
"rejected": " 是的,你可以直接将它喷射到布上。"
}
```

## 生成训练record

- cd data && make_data_example.py
- python data_utils.py

注:
num_process_worker 为多进程制作数据 , 如果数据量较大 , 适当调大至cpu数量
dataHelper.make_dataset_with_args(data_args.train_file,mixed_data=False, shuffle=True,mode='train',num_process_worker=0)

## training
```text
# 制作数据
cd scripts
bash train_full.sh -m dataset
or
bash train_lora.sh -m dataset
or
bash train_ptv2.sh -m dataset

注: num_process_worker 为多进程制作数据 , 如果数据量较大 , 适当调大至cpu数量
dataHelper.make_dataset_with_args(data_args.train_file,mixed_data=False, shuffle=True,mode='train',num_process_worker=0)

# 全参数训练
bash train_full.sh -m train

# lora adalora ia3
bash train_lora.sh -m train

# ptv2
bash train_ptv2.sh -m train
```

## 训练参数
[训练参数](args.MD)

## 友情链接

- [pytorch-task-example](https://github.com/ssbuild/pytorch-task-example)
- [chatmoss_finetuning](https://github.com/ssbuild/chatmoss_finetuning)
- [chatglm_finetuning](https://github.com/ssbuild/chatglm_finetuning)
- [chatglm2_finetuning](https://github.com/ssbuild/chatglm2_finetuning)
- [t5_finetuning](https://github.com/ssbuild/t5_finetuning)
- [llm_finetuning](https://github.com/ssbuild/llm_finetuning)
- [llm_rlhf](https://github.com/ssbuild/llm_rlhf)
- [chatglm_rlhf](https://github.com/ssbuild/chatglm_rlhf)
- [t5_rlhf](https://github.com/ssbuild/t5_rlhf)
- [rwkv_finetuning](https://github.com/ssbuild/rwkv_finetuning)
- [baichuan_finetuning](https://github.com/ssbuild/baichuan_finetuning)
- [internlm_finetuning](https://github.com/ssbuild/internlm_finetuning)
- [qwen_finetuning](https://github.com/ssbuild/qwen_finetuning)
- [xverse_finetuning](https://github.com/ssbuild/xverse_finetuning)
- [auto_finetuning](https://github.com/ssbuild/auto_finetuning)
- [aigc_serving](https://github.com/ssbuild/aigc_serving)

##
纯粹而干净的代码

## 参考
- https://arxiv.org/pdf/2305.18290.pdf
- https://github.com/eric-mitchell/direct-preference-optimization